Suppr超能文献

拟南芥和谷类作物季节性开花反应的分子生物学

The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals.

作者信息

Greenup Aaron, Peacock W James, Dennis Elizabeth S, Trevaskis Ben

机构信息

Commonwealth Scientific and Industrial Research Organization, Division of Plant Industry, Canberra, Australian Capital Territory 2601, Australia.

出版信息

Ann Bot. 2009 Jun;103(8):1165-72. doi: 10.1093/aob/mcp063. Epub 2009 Mar 21.

Abstract

BACKGROUND

In arabidopsis (Arabidopsis thaliana), FLOWERING LOCUS T (FT) and FLOWERING LOCUS C (FLC) play key roles in regulating seasonal flowering-responses to synchronize flowering with optimal conditions. FT is a promoter of flowering activated by long days and by warm conditions. FLC represses FT to delay flowering until plants experience winter.

SCOPE

The identification of genes controlling flowering in cereals allows comparison of the molecular pathways controlling seasonal flowering-responses in cereals with those of arabidopsis. The role of FT has been conserved between arabidopsis and cereals; FT-like genes trigger flowering in response to short days in rice or long days in temperate cereals, such as wheat (Triticum aestivum) and barley (Hordeum vulgare). Many varieties of wheat and barley require vernalization to flower but FLC-like genes have not been identified in cereals. Instead, VERNALIZATION2 (VRN2) inhibits long-day induction of FT-like1 (FT1) prior to winter. VERNALIZATION1 (VRN1) is activated by low-temperatures during winter to repress VRN2 and to allow the long-day response to occur in spring. In rice (Oryza sativa) a VRN2-like gene Ghd7, which influences grain number, plant height and heading date, represses the FT-like gene Heading date 3a (Hd3a) in long days, suggesting a broader role for VRN2-like genes in regulating day-length responses in cereals. Other genes, including Early heading date (Ehd1), Oryza sativa MADS51 (OsMADS51) and INDETERMINATE1 (OsID1) up-regulate Hd3a in short days. These genes might account for the different day-length response of rice compared with the temperate cereals. No genes homologous to VRN2, Ehd1, Ehd2 or OsMADS51 occur in arabidopsis.

CONCLUSIONS

It seems that different genes regulate FT orthologues to elicit seasonal flowering-responses in arabidopsis and the cereals. This highlights the need for more detailed study into the molecular basis of seasonal flowering-responses in cereal crops or in closely related model plants such as Brachypodium distachyon.

摘要

背景

在拟南芥中,成花素基因(FT)和开花抑制因子C基因(FLC)在调节季节性开花反应以使开花与最佳条件同步方面发挥着关键作用。FT是一种开花促进因子,受长日照和温暖条件激活。FLC抑制FT,从而延迟开花,直到植物经历冬季。

范围

鉴定控制谷类作物开花的基因,有助于比较谷类作物和拟南芥中控制季节性开花反应的分子途径。FT的作用在拟南芥和谷类作物中是保守的;类FT基因在水稻中响应短日照或在温带谷类作物(如小麦和大麦)中响应长日照时触发开花。许多小麦和大麦品种需要经过春化作用才能开花,但尚未在谷类作物中鉴定出类FLC基因。相反,春化作用2基因(VRN2)在冬季之前抑制类FT1基因(FT1)的长日照诱导。春化作用1基因(VRN1)在冬季受低温激活,抑制VRN2,使长日照反应在春季发生。在水稻中,一个影响粒数、株高和抽穗期的类VRN2基因Ghd7在长日照下抑制类FT基因抽穗期3a基因(Hd3a),这表明类VRN2基因在调节谷类作物的日长反应中具有更广泛的作用。其他基因,包括早熟基因(Ehd1)、水稻MADS盒基因51(OsMADS51)和不定基因1(OsID1)在短日照下上调Hd3a。这些基因可能解释了水稻与温带谷类作物不同的日长反应。在拟南芥中未发现与VRN2、Ehd1、Ehd2或OsMADS51同源的基因。

结论

似乎不同的基因调控FT同源基因,以引发拟南芥和谷类作物中的季节性开花反应。这突出表明需要更详细地研究谷类作物或密切相关的模式植物(如短柄草)中季节性开花反应的分子基础。

相似文献

1
The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals.
Ann Bot. 2009 Jun;103(8):1165-72. doi: 10.1093/aob/mcp063. Epub 2009 Mar 21.
2
Interaction of photoperiod and vernalization determines flowering time of Brachypodium distachyon.
Plant Physiol. 2014 Feb;164(2):694-709. doi: 10.1104/pp.113.232678. Epub 2013 Dec 19.
3
Evolution of VRN2/Ghd7-Like Genes in Vernalization-Mediated Repression of Grass Flowering.
Plant Physiol. 2016 Apr;170(4):2124-35. doi: 10.1104/pp.15.01279. Epub 2016 Feb 4.
5
Integration of seasonal flowering time responses in temperate cereals.
Plant Signal Behav. 2008 Aug;3(8):601-2. doi: 10.4161/psb.3.8.6352.
6
Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals.
Ann Bot. 2014 Nov;114(7):1445-58. doi: 10.1093/aob/mcu032. Epub 2014 Mar 20.
7
ODDSOC2 is a MADS box floral repressor that is down-regulated by vernalization in temperate cereals.
Plant Physiol. 2010 Jul;153(3):1062-73. doi: 10.1104/pp.109.152488. Epub 2010 Apr 29.
8
Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene.
Proc Natl Acad Sci U S A. 2009 May 19;106(20):8386-91. doi: 10.1073/pnas.0903566106. Epub 2009 May 4.
9
The molecular mechanism of vernalization in Arabidopsis and cereals: role of Flowering Locus C and its homologs.
Physiol Plant. 2020 Nov;170(3):373-383. doi: 10.1111/ppl.13163. Epub 2020 Aug 13.

引用本文的文献

1
Targets and mechanisms of epigenetic regulation in the temperate cereal vernalisation process.
Front Plant Sci. 2025 Aug 5;16:1520593. doi: 10.3389/fpls.2025.1520593. eCollection 2025.
6
Seasonal variation of two floral patterns in Clematis 'Vyvyan Pennell' and its underlying mechanism.
BMC Plant Biol. 2024 Jan 2;24(1):22. doi: 10.1186/s12870-023-04696-9.
8
Multiple transcriptome comparisons reveal the essential roles of in floral initiation and and in floral activation in blueberry.
Front Genet. 2023 Apr 5;14:1105519. doi: 10.3389/fgene.2023.1105519. eCollection 2023.
9
Isoforms Cooperatively Regulate Temperature-Related Flowering in .
Biology (Basel). 2023 Feb 19;12(2):331. doi: 10.3390/biology12020331.
10
Molecular Links between Flowering and Abiotic Stress Response: A Focus on .
Plants (Basel). 2023 Jan 10;12(2):331. doi: 10.3390/plants12020331.

本文引用的文献

1
A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization.
Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):16831-6. doi: 10.1073/pnas.0808687105. Epub 2008 Oct 14.
3
Ehd2, a rice ortholog of the maize INDETERMINATE1 gene, promotes flowering by up-regulating Ehd1.
Plant Physiol. 2008 Nov;148(3):1425-35. doi: 10.1104/pp.108.125542. Epub 2008 Sep 12.
4
Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod.
Plant J. 2008 Dec;56(6):1018-29. doi: 10.1111/j.1365-313X.2008.03667.x. Epub 2008 Oct 4.
5
RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice.
Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12915-20. doi: 10.1073/pnas.0806019105. Epub 2008 Aug 25.
6
A repressor complex governs the integration of flowering signals in Arabidopsis.
Dev Cell. 2008 Jul;15(1):110-20. doi: 10.1016/j.devcel.2008.05.002.
7
Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice.
Nat Genet. 2008 Jun;40(6):761-7. doi: 10.1038/ng.143. Epub 2008 May 4.
9
Regulation and identity of florigen: FLOWERING LOCUS T moves center stage.
Annu Rev Plant Biol. 2008;59:573-94. doi: 10.1146/annurev.arplant.59.032607.092755.
10
Wheat FT protein regulates VRN1 transcription through interactions with FDL2.
Plant J. 2008 Aug;55(4):543-54. doi: 10.1111/j.1365-313X.2008.03526.x. Epub 2008 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验