Li Linqing, Han Hui, Balcom Bruce J
MRI Centre, Department of Physics, P.O. Box 4400, University of New Brunswick, Fredericton, NB, Canada E3B 5A3.
J Magn Reson. 2009 Jun;198(2):252-60. doi: 10.1016/j.jmr.2009.03.002. Epub 2009 Mar 9.
Fluid density imaging is highly desirable in a wide variety of porous media measurements. The SPRITE class of MRI methods has proven to be robust and general in their ability to generate density images in porous media, however the short encoding times required, with correspondingly high magnetic field gradient strengths and filter widths, and low flip angle RF pulses, yield sub-optimal S/N images, especially at low static field strength. This paper explores two implementations of pure phase encode spin echo 1D imaging, with application to a proposed new petroleum reservoir core analysis measurement. In the first implementation of the pulse sequence, we modify the spin echo single point imaging (SE-SPI) technique to acquire the k-space origin data point, with a near zero evolution time, from the free induction decay (FID) following a 90 degrees excitation pulse. Subsequent k-space data points are acquired by separately phase encoding individual echoes in a multi-echo acquisition. T(2) attenuation of the echo train yields an image convolution which causes blurring. The T(2) blur effect is moderate for porous media with T(2) lifetime distributions longer than 5 ms. As a robust, high S/N, and fast 1D imaging method, this method will be highly complementary to SPRITE techniques for the quantitative analysis of fluid content in porous media. In the second implementation of the SE-SPI pulse sequence, modification of the basic measurement permits fast determination of spatially resolved T(2) distributions in porous media through separately phase encoding each echo in a multi-echo CPMG pulse train. An individual T(2) weighted image may be acquired from each echo. The echo time (TE) of each T(2) weighted image may be reduced to 500 micros or less. These profiles can be fit to extract a T(2) distribution from each pixel employing a variety of standard inverse Laplace transform methods. Fluid content 1D images are produced as an essential by product of determining the spatially resolved T(2) distribution. These 1D images do not suffer from a T(2) related blurring. The above SE-SPI measurements are combined to generate 1D images of the local saturation and T(2) distribution as a function of saturation, upon centrifugation of petroleum reservoir core samples. The logarithm mean T(2) is observed to shift linearly with water saturation. This new reservoir core analysis measurement may provide a valuable calibration of the Coates equation for irreducible water saturation, which has been widely implemented in NMR well logging measurements.
在各种多孔介质测量中,流体密度成像非常必要。MRI方法中的SPRITE类已被证明在多孔介质中生成密度图像的能力方面具有鲁棒性和通用性,然而,所需的短编码时间,以及相应的高磁场梯度强度和滤波器宽度,再加上低翻转角射频脉冲,会产生次优的信噪比图像,尤其是在低静磁场强度下。本文探讨了纯相位编码自旋回波一维成像的两种实现方式,并将其应用于一种新提出的油藏岩心分析测量。在脉冲序列的第一种实现方式中,我们修改了自旋回波单点成像(SE-SPI)技术,以便从90度激发脉冲后的自由感应衰减(FID)中获取具有接近零演化时间的k空间原点数据点。随后的k空间数据点通过在多回波采集中对各个回波分别进行相位编码来获取。回波串的T(2)衰减会产生图像卷积,从而导致模糊。对于T(2)寿命分布大于5 ms的多孔介质,T(2)模糊效应适中。作为一种鲁棒、高信噪比且快速的一维成像方法,该方法将与SPRITE技术高度互补,用于多孔介质中流体含量的定量分析。在SE-SPI脉冲序列的第二种实现方式中,对基本测量进行修改,通过在多回波CPMG脉冲串中对每个回波分别进行相位编码,可以快速确定多孔介质中空间分辨的T(2)分布。可以从每个回波获取单独的T(2)加权图像。每个T(2)加权图像的回波时间(TE)可以缩短至500微秒或更短。这些剖面图可以采用各种标准的拉普拉斯逆变换方法进行拟合,以从每个像素中提取T(2)分布。流体含量一维图像是确定空间分辨的T(2)分布的一个重要副产品。这些一维图像不会受到与T(2)相关的模糊影响。在对油藏岩心样品进行离心处理后,将上述SE-SPI测量结果结合起来,生成局部饱和度和T(2)分布随饱和度变化的一维图像。观察到对数平均T(2)随含水饱和度呈线性变化。这种新的油藏岩心分析测量可能为不可压缩水饱和度的科茨方程提供有价值的校准,该方程已在核磁共振测井测量中广泛应用。