Suppr超能文献

HIV天冬氨酰蛋白酶抑制剂会干扰亚马逊利什曼原虫的细胞增殖、超微结构及巨噬细胞感染。

HIV aspartyl peptidase inhibitors interfere with cellular proliferation, ultrastructure and macrophage infection of Leishmania amazonensis.

作者信息

Santos Lívia O, Marinho Fernanda A, Altoé Ellen F, Vitório Bianca S, Alves Carlos R, Britto Constança, Motta Maria Cristina M, Branquinha Marta H, Santos André L S, d'Avila-Levy Claudia M

机构信息

Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ, Brazil.

出版信息

PLoS One. 2009;4(3):e4918. doi: 10.1371/journal.pone.0004918. Epub 2009 Mar 26.

Abstract

BACKGROUND

Leishmania is the etiologic agent of leishmanisais, a protozoan disease whose pathogenic events are not well understood. Current therapy is suboptimal due to toxicity of the available therapeutic agents and the emergence of drug resistance. Compounding these problems is the increase in the number of cases of Leishmania-HIV coinfection, due to the overlap between the AIDS epidemic and leishmaniasis.

METHODOLOGY/PRINCIPAL FINDINGS: In the present report, we have investigated the effect of HIV aspartyl peptidase inhibitors (PIs) on the Leishmania amazonensis proliferation, ultrastructure, interaction with macrophage cells and expression of classical peptidases which are directly involved in the Leishmania pathogenesis. All the HIV PIs impaired parasite growth in a dose-dependent fashion, especially nelfinavir and lopinavir. HIV PIs treatment caused profound changes in the leishmania ultrastructure as shown by transmission electron microscopy, including cytoplasm shrinking, increase in the number of lipid inclusions and some cells presenting the nucleus closely wrapped by endoplasmic reticulum resembling an autophagic process, as well as chromatin condensation which is suggestive of apoptotic death. The hydrolysis of HIV peptidase substrate by L. amazonensis extract was inhibited by pepstatin and HIV PIs, suggesting that an aspartyl peptidase may be the intracellular target of the inhibitors. The treatment with HIV PIs of either the promastigote forms preceding the interaction with macrophage cells or the amastigote forms inside macrophages drastically reduced the association indexes. Despite all these beneficial effects, the HIV PIs induced an increase in the expression of cysteine peptidase b (cpb) and the metallopeptidase gp63, two well-known virulence factors expressed by Leishmania spp.

CONCLUSIONS/SIGNIFICANCE: In the face of leishmaniasis/HIV overlap, it is critical to further comprehend the sophisticated interplays among Leishmania, HIV and macrophages. In addition, there are many unresolved questions related to the management of Leishmania-HIV-coinfected patients. For instance, the efficacy of therapy aimed at controlling each pathogen in coinfected individuals remains largely undefined. The results presented herein add new in vitro insight into the wide spectrum efficacy of HIV PIs and suggest that additional studies about the synergistic effects of classical antileishmanial compounds and HIV PIs in macrophages coinfected with Leishmania and HIV-1 should be performed.

摘要

背景

利什曼原虫是利什曼病的病原体,这是一种原生动物疾病,其致病机制尚未完全清楚。由于现有治疗药物的毒性和耐药性的出现,目前的治疗方法并不理想。由于艾滋病流行与利什曼病的重叠,利什曼原虫与艾滋病毒合并感染的病例数增加,使这些问题更加复杂。

方法/主要发现:在本报告中,我们研究了艾滋病毒天冬氨酰蛋白酶抑制剂(PIs)对亚马逊利什曼原虫增殖、超微结构、与巨噬细胞的相互作用以及直接参与利什曼原虫发病机制的经典蛋白酶表达的影响。所有艾滋病毒蛋白酶抑制剂均以剂量依赖方式损害寄生虫生长,尤其是奈非那韦和洛匹那韦。透射电子显微镜显示,艾滋病毒蛋白酶抑制剂治疗导致利什曼原虫超微结构发生深刻变化,包括细胞质收缩、脂质包涵体数量增加,一些细胞的细胞核被内质网紧密包裹,类似于自噬过程,以及染色质浓缩,提示细胞凋亡死亡。胃蛋白酶抑制剂和艾滋病毒蛋白酶抑制剂可抑制亚马逊利什曼原虫提取物对艾滋病毒蛋白酶底物的水解,这表明天冬氨酰蛋白酶可能是这些抑制剂的细胞内靶点。用艾滋病毒蛋白酶抑制剂处理巨噬细胞相互作用前的前鞭毛体形式或巨噬细胞内的无鞭毛体形式,均会显著降低结合指数。尽管有这些有益作用,但艾滋病毒蛋白酶抑制剂会导致半胱氨酸蛋白酶b(cpb)和金属蛋白酶gp63的表达增加,这两种是利什曼原虫属表达的著名毒力因子。

结论/意义:面对利什曼病/艾滋病毒重叠的情况,进一步了解利什曼原虫、艾滋病毒和巨噬细胞之间复杂的相互作用至关重要。此外,在管理利什曼原虫与艾滋病毒合并感染患者方面,仍有许多未解决的问题。例如,针对控制合并感染个体中每种病原体的治疗效果在很大程度上仍不明确。本文给出的结果为艾滋病毒蛋白酶抑制剂的广泛疗效提供了新的体外见解,并表明应开展更多关于经典抗利什曼原虫化合物与艾滋病毒蛋白酶抑制剂在利什曼原虫和艾滋病毒-1合并感染的巨噬细胞中的协同作用的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d8c/2656615/d854035d3680/pone.0004918.g001.jpg

相似文献

3
Lopinavir, an HIV-1 peptidase inhibitor, induces alteration on the lipid metabolism of Leishmania amazonensis promastigotes.
Parasitology. 2018 Sep;145(10):1304-1310. doi: 10.1017/S0031182018000823. Epub 2018 May 28.
4
Decoding the anti-Trypanosoma cruzi action of HIV peptidase inhibitors using epimastigotes as a model.
PLoS One. 2014 Dec 2;9(12):e113957. doi: 10.1371/journal.pone.0113957. eCollection 2014.
5
Primary evidence of the mechanisms of action of HIV aspartyl peptidase inhibitors on Trypanosoma cruzi trypomastigote forms.
Int J Antimicrob Agents. 2018 Aug;52(2):185-194. doi: 10.1016/j.ijantimicag.2018.03.021. Epub 2018 Apr 7.
6
Effects of HIV aspartyl-proteinase inhibitors on Leishmania sp.
Exp Parasitol. 2010 Dec;126(4):557-63. doi: 10.1016/j.exppara.2010.06.002. Epub 2010 Jun 8.

引用本文的文献

1
Leishmanicidal Effect of Silibinin: Disrupting Redox Balance via Trypanothione Reductase Inhibition.
ACS Omega. 2025 Jun 18;10(25):27262-27271. doi: 10.1021/acsomega.5c02606. eCollection 2025 Jul 1.
2
Signal peptide peptidase: a potential therapeutic target for parasitic and viral infections.
Expert Opin Ther Targets. 2022 Mar;26(3):261-273. doi: 10.1080/14728222.2022.2047932. Epub 2022 Mar 7.
3
Antileishmanial Efficacy of the Calpain Inhibitor MDL28170 in Combination with Amphotericin B.
Trop Med Infect Dis. 2022 Feb 16;7(2):29. doi: 10.3390/tropicalmed7020029.
6
Calpains of Leishmania braziliensis: genome analysis, differential expression, and functional analysis.
Mem Inst Oswaldo Cruz. 2019 Sep 23;114:e190147. doi: 10.1590/0074-02760190147. eCollection 2019.
7
Miltefosine-Lopinavir Combination Therapy Against Infection: and Approaches.
Front Cell Infect Microbiol. 2019 Jun 28;9:229. doi: 10.3389/fcimb.2019.00229. eCollection 2019.
8
Participation of Trypanosoma cruzi gp63 molecules on the interaction with Rhodnius prolixus.
Parasitology. 2019 Jul;146(8):1075-1082. doi: 10.1017/S0031182019000441. Epub 2019 May 6.
9
2'-Hydroxyflavanone activity in vitro and in vivo against wild-type and antimony-resistant Leishmania amazonensis.
PLoS Negl Trop Dis. 2018 Dec 6;12(12):e0006930. doi: 10.1371/journal.pntd.0006930. eCollection 2018 Dec.
10
Crystal structure of the retroviral protease-like domain of a protozoal DNA damage-inducible 1 protein.
FEBS Open Bio. 2018 Aug 3;8(9):1379-1394. doi: 10.1002/2211-5463.12491. eCollection 2018 Sep.

本文引用的文献

2
Immunological characteristics of experimental murine infection with Leishmania (Leishmania) amazonensis.
Vet Parasitol. 2008 Dec 20;158(4):239-55. doi: 10.1016/j.vetpar.2008.09.015. Epub 2008 Sep 18.
7
The relationship between leishmaniasis and AIDS: the second 10 years.
Clin Microbiol Rev. 2008 Apr;21(2):334-59, table of contents. doi: 10.1128/CMR.00061-07.
8
[Visceral leishmaniasis and HIV infection in the HAART era].
Acta Med Port. 2007 Jul-Aug;20(4):291-8. Epub 2007 Nov 15.
9
Mucosal leishmaniasis . Current scenario and prospects for treatment.
Acta Trop. 2008 Jan;105(1):1-9. doi: 10.1016/j.actatropica.2007.08.003. Epub 2007 Aug 19.
10
HIV-1 replication is stimulated by sodium stibogluconate, the therapeutic mainstay in the treatment of leishmaniasis.
J Infect Dis. 2007 Jan 15;195(2):236-45. doi: 10.1086/510398. Epub 2006 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验