Friston Karl J, Stephan Klaas E
Wellcome Trust Centre for Neuroimaging, University College London, United Kingdom.
Synthese. 2007 Dec 1;159(3):417-458. doi: 10.1007/s11229-007-9237-y.
If one formulates Helmholtz's ideas about perception in terms of modern-day theories one arrives at a model of perceptual inference and learning that can explain a remarkable range of neurobiological facts. Using constructs from statistical physics it can be shown that the problems of inferring what cause our sensory input and learning causal regularities in the sensorium can be resolved using exactly the same principles. Furthermore, inference and learning can proceed in a biologically plausible fashion. The ensuing scheme rests on Empirical Bayes and hierarchical models of how sensory information is generated. The use of hierarchical models enables the brain to construct prior expectations in a dynamic and context-sensitive fashion. This scheme provides a principled way to understand many aspects of the brain's organisation and responses.In this paper, we suggest that these perceptual processes are just one emergent property of systems that conform to a free-energy principle. The free-energy considered here represents a bound on the surprise inherent in any exchange with the environment, under expectations encoded by its state or configuration. A system can minimise free-energy by changing its configuration to change the way it samples the environment, or to change its expectations. These changes correspond to action and perception respectively and lead to an adaptive exchange with the environment that is characteristic of biological systems. This treatment implies that the system's state and structure encode an implicit and probabilistic model of the environment. We will look at models entailed by the brain and how minimisation of free-energy can explain its dynamics and structure.
如果依据现代理论来阐述亥姆霍兹的感知观点,就会得出一个感知推理与学习模型,该模型能够解释一系列显著的神经生物学事实。利用统计物理学的概念可以证明,推断何种因素导致我们的感官输入以及在感觉中枢学习因果规律的问题,可以通过完全相同的原理来解决。此外,推理和学习能够以生物学上合理的方式进行。由此产生的方案基于经验贝叶斯以及关于感官信息如何生成的层次模型。层次模型的运用使大脑能够以动态且上下文敏感的方式构建先验期望。该方案为理解大脑组织和反应的诸多方面提供了一种有原则的方法。在本文中,我们认为这些感知过程仅仅是符合自由能原理的系统的一种涌现属性。这里所考虑的自由能代表了在由其状态或配置所编码的期望下,与环境进行任何交互中固有的惊奇程度的一种限制。一个系统可以通过改变其配置来改变它对环境进行采样的方式,或者改变其期望,从而使自由能最小化。这些变化分别对应于行动和感知,并导致与环境的适应性交互,这是生物系统的特征。这种处理方式意味着系统的状态和结构编码了环境的一个隐含的概率模型。我们将探讨大脑所蕴含的模型,以及自由能最小化如何能够解释其动态和结构。