Kayabol Koray, Kuruoğlu Ercan E, Sankur Bülent
Electrical and Electronics Engineering Department, Istanbul University, Istanbul, Turkey.
IEEE Trans Image Process. 2009 May;18(5):982-94. doi: 10.1109/TIP.2009.2012905.
We investigate the source separation problem of random fields within a Bayesian framework. The Bayesian formulation enables the incorporation of prior image models in the estimation of sources. Due to the intractability of the analytical solution, we resort to numerical methods for the joint maximization of the a posteriori distribution of the unknown variables and parameters. We construct the prior densities of pixels using Markov random fields based on a statistical model of the gradient image, and we use a fully Bayesian method with modified-Gibbs sampling. We contrast our work to approximate Bayesian solutions such as Iterated Conditional Modes (ICM) and to non-Bayesian solutions of ICA variety. The performance of the method is tested on synthetic mixtures of texture images and astrophysical images under various noise scenarios. The proposed method is shown to outperform significantly both its approximate Bayesian and non-Bayesian competitors.
我们在贝叶斯框架内研究随机场的源分离问题。贝叶斯公式使得在源估计中能够纳入先验图像模型。由于解析解难以处理,我们采用数值方法来联合最大化未知变量和参数的后验分布。我们基于梯度图像的统计模型,使用马尔可夫随机场构建像素的先验密度,并采用具有修正吉布斯采样的全贝叶斯方法。我们将我们的工作与近似贝叶斯解(如迭代条件模式(ICM))以及ICA类的非贝叶斯解进行对比。该方法的性能在各种噪声场景下的纹理图像和天体物理图像的合成混合图像上进行了测试。结果表明,所提出的方法显著优于其近似贝叶斯和非贝叶斯竞争对手。