Suppr超能文献

冗余、非线性、动态肌肉骨骼系统的前馈与反馈联合控制

Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.

作者信息

Blana Dimitra, Kirsch Robert F, Chadwick Edward K

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.

出版信息

Med Biol Eng Comput. 2009 May;47(5):533-42. doi: 10.1007/s11517-009-0479-3. Epub 2009 Apr 3.

Abstract

A functional electrical stimulation controller is presented that uses a combination of feedforward and feedback for arm control in high-level injury. The feedforward controller generates the muscle activations nominally required for desired movements, and the feedback controller corrects for errors caused by muscle fatigue and external disturbances. The feedforward controller is an artificial neural network (ANN) which approximates the inverse dynamics of the arm. The feedback loop includes a PID controller in series with a second ANN representing the nonlinear properties and biomechanical interactions of muscles and joints. The controller was designed and tested using a two-joint musculoskeletal model of the arm that includes four mono-articular and two bi-articular muscles. Its performance during goal-oriented movements of varying amplitudes and durations showed a tracking error of less than 4 degrees in ideal conditions, and less than 10 degrees even in the case of considerable fatigue and external disturbances.

摘要

提出了一种功能性电刺激控制器,该控制器在高位损伤的手臂控制中采用前馈和反馈相结合的方式。前馈控制器生成期望运动名义上所需的肌肉激活,反馈控制器校正由肌肉疲劳和外部干扰引起的误差。前馈控制器是一个人工神经网络(ANN),它近似于手臂的逆动力学。反馈回路包括一个与第二个ANN串联的PID控制器,第二个ANN表示肌肉和关节的非线性特性以及生物力学相互作用。该控制器是使用手臂的双关节肌肉骨骼模型设计和测试的,该模型包括四块单关节肌肉和两块双关节肌肉。在不同幅度和持续时间的目标导向运动中,其性能在理想条件下显示跟踪误差小于4度,即使在相当疲劳和存在外部干扰的情况下,跟踪误差也小于10度。

相似文献

1
Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.
Med Biol Eng Comput. 2009 May;47(5):533-42. doi: 10.1007/s11517-009-0479-3. Epub 2009 Apr 3.
2
An optimized proportional-derivative controller for the human upper extremity with gravity.
J Biomech. 2015 Oct 15;48(13):3692-700. doi: 10.1016/j.jbiomech.2015.08.016. Epub 2015 Aug 29.
3
A biologically inspired neural network controller for ballistic arm movements.
J Neuroeng Rehabil. 2007 Sep 3;4:33. doi: 10.1186/1743-0003-4-33.
4
Adaptive neural network control of cyclic movements using functional neuromuscular stimulation.
IEEE Trans Rehabil Eng. 2000 Mar;8(1):42-52. doi: 10.1109/86.830948.
5
6
Feasibility of EMG-based neural network controller for an upper extremity neuroprosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2009 Feb;17(1):80-90. doi: 10.1109/TNSRE.2008.2010480.
7
Joint angle control by FES using a feedback error learning controller.
IEEE Trans Neural Syst Rehabil Eng. 2005 Sep;13(3):359-71. doi: 10.1109/TNSRE.2005.847355.
8
Optimization and evaluation of a proportional derivative controller for planar arm movement.
J Biomech. 2010 Apr 19;43(6):1086-91. doi: 10.1016/j.jbiomech.2009.12.017. Epub 2010 Jan 25.
9
Motion control of musculoskeletal systems with redundancy.
Biol Cybern. 2008 Dec;99(6):503-16. doi: 10.1007/s00422-008-0258-5. Epub 2008 Nov 5.

引用本文的文献

1
Experimental feasibility of personalized functional neuromuscular stimulation stepping patterns developed .
Front Bioeng Biotechnol. 2025 Jul 30;13:1609734. doi: 10.3389/fbioe.2025.1609734. eCollection 2025.
4
Data-Driven Dynamic Motion Planning for Practical FES-Controlled Reaching Motions in Spinal Cord Injury.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:2246-2256. doi: 10.1109/TNSRE.2023.3272929. Epub 2023 May 11.
5
Restoration of complex movement in the paralyzed upper limb.
J Neural Eng. 2022 Jul 1;19(4). doi: 10.1088/1741-2552/ac7ad7.
6
Improving the Learning Rate, Accuracy, and Workspace of Reinforcement Learning Controllers for a Musculoskeletal Model of the Human Arm.
IEEE Trans Neural Syst Rehabil Eng. 2022;30:30-39. doi: 10.1109/TNSRE.2021.3135471. Epub 2022 Jan 28.
7
Hindsight Experience Replay Improves Reinforcement Learning for Control of a MIMO Musculoskeletal Model of the Human Arm.
IEEE Trans Neural Syst Rehabil Eng. 2021;29:1016-1025. doi: 10.1109/TNSRE.2021.3081056. Epub 2021 Jun 8.
8
On the Relationship Between Muscle Synergies and Redundant Degrees of Freedom in Musculoskeletal Systems.
Front Comput Neurosci. 2019 Apr 16;13:23. doi: 10.3389/fncom.2019.00023. eCollection 2019.
9
A Muscle-Specific Rehabilitation Training Method Based on Muscle Activation and the Optimal Load Orientation Concept.
Appl Bionics Biomech. 2018 Nov 22;2018:2365983. doi: 10.1155/2018/2365983. eCollection 2018.
10
Holding Static Arm Configurations With Functional Electrical Stimulation: A Case Study.
IEEE Trans Neural Syst Rehabil Eng. 2018 Oct;26(10):2044-2052. doi: 10.1109/TNSRE.2018.2866226. Epub 2018 Aug 20.

本文引用的文献

1
Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks.
J Neuroeng Rehabil. 2006 Oct 9;3:25. doi: 10.1186/1743-0003-3-25.
2
The relationship between two different mechanical cost functions and muscle oxygen consumption.
J Biomech. 2006;39(4):758-65. doi: 10.1016/j.jbiomech.2004.11.034.
5
Model-based control of FES-induced single joint movements.
IEEE Trans Neural Syst Rehabil Eng. 2001 Sep;9(3):245-57. doi: 10.1109/7333.948452.
6
Surgical technique for installing an eight-channel neuroprosthesis for standing.
Clin Orthop Relat Res. 2001 Apr(385):237-52. doi: 10.1097/00003086-200104000-00035.
7
Simulated feedforward neural network coordination of hand grasp and wrist angle in a neuroprosthesis.
IEEE Trans Rehabil Eng. 2000 Sep;8(3):297-304. doi: 10.1109/86.867871.
8
Measuring muscle and joint geometry parameters of a shoulder for modeling purposes.
J Biomech. 1999 Nov;32(11):1191-7. doi: 10.1016/s0021-9290(99)00122-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验