Suppr超能文献

使用微束进行放射生物学研究的进展。

Advances in radiobiological studies using a microbeam.

作者信息

Hei Tom K, Ballas Leslie K, Brenner David J, Geard Charles R

机构信息

Center for Radiological Research, Mailman School of Public Health, Columbia University, New York, NY 10032, USA.

出版信息

J Radiat Res. 2009 Mar;50 Suppl A(0 0):A7-A12. doi: 10.1269/jrr.08135s.

Abstract

Recent developments in microbeam technology have made drastic improvements in particle delivery, focusing, image processing and precision to allow for rapid advances in our knowledge in radiation biology. The unequivocal demonstration that targeted cytoplasmic irradiation results in mutations in the nuclei of hit cells and the presence of non-targeted effects, all made possible using a charged particle microbeam, results in a paradigm shift in our basic understanding of the target theory and other radiation-induced low dose effects. The demonstration of a bystander effect in 3D human tissue and whole organisms have shown the potential relevance of the non-targeted response in human health. The demonstration of delayed mutations in the progeny of bystander cells suggest that genomic instability induced following ionizing radiation exposure is not dependent on direct damage to cell nucleus. The identification of specific signaling pathways provides mechanistic insight on the nature of the bystander process.

摘要

微束技术的最新进展在粒子传输、聚焦、图像处理和精度方面取得了显著进步,从而使我们在辐射生物学领域的知识得以迅速发展。使用带电粒子微束明确证明了靶向细胞质照射会导致受照射细胞的细胞核发生突变以及存在非靶向效应,这使我们对靶标理论和其他辐射诱导的低剂量效应的基本理解发生了范式转变。在三维人体组织和整个生物体中证明的旁观者效应表明了非靶向反应在人类健康中的潜在相关性。旁观者细胞后代中延迟突变的证明表明,电离辐射暴露后诱导的基因组不稳定性并不依赖于对细胞核的直接损伤。特定信号通路的识别为旁观者过程的本质提供了机制性见解。

相似文献

1
Advances in radiobiological studies using a microbeam.
J Radiat Res. 2009 Mar;50 Suppl A(0 0):A7-A12. doi: 10.1269/jrr.08135s.
2
Microbeam irradiation facilities for radiobiology in Japan and China.
J Radiat Res. 2009 Mar;50 Suppl A:A29-47. doi: 10.1269/jrr.09009s.
3
Ionizing radiation microbeam facilities for radiobiological studies in Europe.
J Radiat Res. 2009 Mar;50 Suppl A:A13-20. doi: 10.1269/jrr.08133s.
4
Microbeam studies of the bystander response.
J Radiat Res. 2009 Mar;50 Suppl A(Suppl A):A1-6. doi: 10.1269/jrr.09012s.
5
Expanding the question-answering potential of single-cell microbeams at RARAF, USA.
J Radiat Res. 2009 Mar;50 Suppl A(Suppl A):A21-8. doi: 10.1269/jrr.08134s.
6
A new paradigm in radioadaptive response developing from microbeam research.
J Radiat Res. 2009 Mar;50 Suppl A:A67-79. doi: 10.1269/jrr.09003s.
7
Applications of particle microbeams in space radiation research.
J Radiat Res. 2009 Mar;50 Suppl A:A55-8. doi: 10.1269/jrr.09007s.
8
Consequences of cytoplasmic irradiation: studies from microbeam.
J Radiat Res. 2009 Mar;50 Suppl A(0 0):A59-65. doi: 10.1269/jrr.08120s.
9
Investigating the cellular effects of isolated radiation tracks using microbeam techniques.
Adv Space Res. 2002;30(4):871-6. doi: 10.1016/s0273-1177(02)00408-8.
10
Microbeams in radiation biology: review and critical comparison.
Radiat Prot Dosimetry. 2011 Feb;143(2-4):335-9. doi: 10.1093/rpd/ncq388. Epub 2010 Nov 27.

引用本文的文献

1
A Mouse Ear Model for Bystander Studies Induced by Microbeam Irradiation.
Radiat Res. 2015 Aug;184(2):219-25. doi: 10.1667/rr14057.1. Epub 2015 Jul 24.
3
Metabolic oxygen consumption measurement with a single-cell biosensor after particle microbeam irradiation.
Radiat Environ Biophys. 2015 Mar;54(1):137-144. doi: 10.1007/s00411-014-0574-1. Epub 2014 Oct 22.
4
Radiation-Induced Bystander Response: Mechanism and Clinical Implications.
Adv Wound Care (New Rochelle). 2014 Jan 1;3(1):16-24. doi: 10.1089/wound.2013.0468.
5
Immersion Mirau interferometry for label-free live cell imaging in an epi-illumination geometry.
Proc SPIE Int Soc Opt Eng. 2010 Feb 26;7568. doi: 10.1117/12.855651.
6
Redox-modulated phenomena and radiation therapy: the central role of superoxide dismutases.
Antioxid Redox Signal. 2014 Apr 1;20(10):1567-89. doi: 10.1089/ars.2012.5000. Epub 2014 Feb 14.
7
Genomic characterization of a three-dimensional skin model following exposure to ionizing radiation.
J Radiat Res. 2012 Nov 1;53(6):860-75. doi: 10.1093/jrr/rrs063. Epub 2012 Aug 21.
8
Quantitative modeling of chronic myeloid leukemia: insights from radiobiology.
Blood. 2012 May 10;119(19):4363-71. doi: 10.1182/blood-2011-09-381855. Epub 2012 Feb 21.
9
Mechanism of radiation carcinogenesis: role of the TGFBI gene and the inflammatory signaling cascade.
Adv Exp Med Biol. 2011;720:163-70. doi: 10.1007/978-1-4614-0254-1_13.
10
Confocal microscopy for modeling electron microbeam irradiation of skin.
Radiat Environ Biophys. 2011 Aug;50(3):365-9. doi: 10.1007/s00411-011-0371-z. Epub 2011 May 21.

本文引用的文献

1
Genomic and epigenetic instability in colorectal cancer pathogenesis.
Gastroenterology. 2008 Oct;135(4):1079-99. doi: 10.1053/j.gastro.2008.07.076. Epub 2008 Sep 4.
2
Mechanism of radiation-induced bystander effects: a unifying model.
J Pharm Pharmacol. 2008 Aug;60(8):943-50. doi: 10.1211/jpp.60.8.0001.
3
Mitochondrial function and nuclear factor-kappaB-mediated signaling in radiation-induced bystander effects.
Cancer Res. 2008 Apr 1;68(7):2233-40. doi: 10.1158/0008-5472.CAN-07-5278.
6
Bystander-induced differentiation: a major response to targeted irradiation of a urothelial explant model.
Mutat Res. 2006 May 11;597(1-2):43-9. doi: 10.1016/j.mrfmmm.2005.08.012. Epub 2006 Jan 19.
8
Mechanism of radiation-induced bystander effect: role of the cyclooxygenase-2 signaling pathway.
Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14641-6. doi: 10.1073/pnas.0505473102. Epub 2005 Oct 3.
9
Biological effects in unirradiated human tissue induced by radiation damage up to 1 mm away.
Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14203-8. doi: 10.1073/pnas.0505020102. Epub 2005 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验