Riss Alexander, Elser Michael J, Bernardi Johannes, Diwald Oliver
Institute of Materials Chemistry, Vienna University of Technology, Veterinarplatz 1/GA, A-1210 Vienna, Austria.
J Am Chem Soc. 2009 May 6;131(17):6198-206. doi: 10.1021/ja810109g.
Layered titanate nanostructures offer promising photoelectronic properties that are subject to surface chemistry-induced morphology changes. For a systematic evaluation of the bulk and surface contributions to the photoactivity of these structures, we investigated their photoelectronic properties and in particular their dependence on the condition of the gas-solid interface. We comprehensively explored the stability of Na(2)Ti(3)O(7) nanowires and scrolled up H(2)Ti(3)O(7) nanotubes by means of transmission electron microscopy, Raman, and FT-IR spectroscopy and subjected both titanate sheet-based structures to controlled thermal activation treatment under high vacuum conditions. We found that throughout thermal annealing up to T = 870 K the structure and morphology of Na(2)Ti(3)O(7) nanowires are retained. Consistent with the significant photoluminescence emission that is attributed to radiative exciton annihilation in the bulk, UV-induced charge separation is strongly suppressed in these structures. H(2)Ti(3)O(7) nanotubes, however, undergo transformation into elongated anatase nanocrystals during annealing at temperatures T >OR= 670 K. Photoexcitation experiments in O(2) atmosphere reveal that these structures efficiently sustain the separation of photogenerated charges. Trends in the abundance of trapped holes and scavenged electrons were characterized quantitatively by tracking the concentration of paramagnetic O(-) and O(2)(-) species with electron paramagnetic resonance spectroscopy EPR, respectively. An incisive analysis of these results in comparison to those obtained on airborne anatase nanocrystals underlines the critical role of surface composition and structure on charge separation and, in consequence, on the chemical utilization of photogenerated charge carriers.
层状钛酸盐纳米结构具有良好的光电性能,但其会因表面化学作用而发生形态变化。为了系统评估这些结构的本体和表面对光活性的贡献,我们研究了它们的光电性能,特别是其对气固界面条件的依赖性。我们通过透射电子显微镜、拉曼光谱和傅里叶变换红外光谱全面探索了Na₂Ti₃O₇纳米线的稳定性以及H₂Ti₃O₇纳米管的卷曲情况,并在高真空条件下对这两种基于钛酸盐片层的结构进行了可控的热活化处理。我们发现,在高达T = 870 K的热退火过程中,Na₂Ti₃O₇纳米线的结构和形态得以保留。与本体中辐射激子湮灭导致的显著光致发光发射一致,这些结构中紫外线诱导的电荷分离受到强烈抑制。然而,H₂Ti₃O₇纳米管在温度T≥670 K的退火过程中会转变为细长的锐钛矿纳米晶体。在O₂气氛中的光激发实验表明,这些结构能够有效地维持光生电荷的分离。通过电子顺磁共振光谱EPR分别跟踪顺磁性O⁻和O₂⁻物种的浓度,定量表征了捕获空穴和清除电子丰度的趋势。将这些结果与在空气中的锐钛矿纳米晶体上获得的结果进行深入分析,突显了表面组成和结构在电荷分离以及光生电荷载流子化学利用方面的关键作用。