Suppr超能文献

基于聚乙二醇的温敏水凝胶:在生理介质中的适用性。

PEG-based thermogels: applicability in physiological media.

机构信息

Research Group Nanotechnology for Life Science, Fraunhofer Institute for Applied Polymer Research, Geiselbergstrasse 69, Potsdam 14476, Germany.

出版信息

J Control Release. 2009 Dec 16;140(3):224-9. doi: 10.1016/j.jconrel.2009.04.012. Epub 2009 Apr 17.

Abstract

Novel biocompatible thermogels have been synthesized and characterized. The hydrogelators were synthesized by atom transfer radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate (MEO(2)MA) and oligo(ethylene glycol) methyl ether methacrylate (OEGMA(475), M(n)=475 g mol(-1) or OEGMA(300), M(n)=300 g mol(-1)) in the presence of a 4-arm star poly(ethylene glycol) (PEG) macroinitiator. The formed macromolecules possess a permanently hydrophilic PEG core and thermoresponsive P(MEO(2)MA-co-OEGMA) outer-blocks. These star-block architectures exhibit an inverse thermogelation behavior in aqueous medium. Typically, above their lower critical solution temperature (LCST), the thermoresponsive P(MEO(2)MA-co-OEGMA) precipitate, thus forming physical crosslinks, which are stabilized in water by hydrophilic PEG bridges. This thermo-induced sol-gel transition can be adjusted within a near-physiological range of temperature by simply varying the composition of the thermoresponsive segments. Moreover, these novel hydrogelators formed free-standing gels in various buffer solutions (e.g., PBS, Tris, MOPS, bicine and HEPES) and in cell culture media. In saline solutions, a weak salting-out effect was observed. However, other components of physiological media (e.g., buffering agents, amino acids, vitamins, proteins) did not hinder the thermogelation process. Hence, these novel thermogels appear as highly attractive candidates for applications in biosciences.

摘要

新型生物相容性温敏水凝胶的合成与表征。水凝胶通过原子转移自由基共聚 2-(2-甲氧基乙氧基)乙基甲基丙烯酸酯(MEO(2)MA)和聚乙二醇甲基醚甲基丙烯酸酯(OEGMA(475),M(n)=475gmol(-1)或 OEGMA(300),M(n)=300gmol(-1))在 4 臂星形聚乙二醇(PEG)大分子引发剂存在下合成。形成的大分子具有永久亲水的 PEG 核和温敏性 P(MEO(2)MA-co-OEGMA)外壳。这些星型嵌段结构在水介质中表现出反温凝胶化行为。通常,在其低临界溶液温度(LCST)以上,温敏性 P(MEO(2)MA-co-OEGMA)沉淀,从而形成物理交联,这些交联通过亲水的 PEG 桥在水中稳定。通过简单改变温敏段的组成,可以在接近生理的温度范围内调节这种热诱导的溶胶-凝胶转变。此外,这些新型水凝胶剂可以在各种缓冲溶液(如 PBS、Tris、MOPS、bicine 和 HEPES)和细胞培养基中形成独立的凝胶。在盐溶液中,观察到较弱的盐析效应。然而,生理介质的其他成分(如缓冲剂、氨基酸、维生素、蛋白质)并不妨碍温凝胶化过程。因此,这些新型温敏水凝胶作为生物科学应用的候选材料具有很大的吸引力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验