Crane-Robinson Colyn, Dragan Anatoly I, Read Christopher M
Biophysics Laboratories, School of Biological Sciences, University of Portsmouth, St. Michael's Building, White Swan Road, Portsmouth, PO1 2DT, UK.
Methods Mol Biol. 2009;543:625-51. doi: 10.1007/978-1-60327-015-1_37.
Understanding the forces driving formation of protein/DNA complexes requires measurement of the Gibbs energy of association, DeltaG, and its component enthalpic, DeltaH, and entropic, DeltaS, contributions. Isothermal titration calorimetry provides the enthalpy (heat) of the binding reaction and an estimate of the association constant, if not too high. Repeating the ITC experiment at several temperatures yields DeltaC ( p ), the change in heat capacity, an important quantity permitting extrapolation of enthalpies and entropies to temperatures outside the experimental range. Binding constants, i.e. Gibbs energies, are best obtained by optical methods such as fluorescence at temperatures where the components are maximally folded. Since DNA-binding domains are often partially unfolded at physiological temperatures, the ITC-observed enthalpy of binding may need to be corrected for the negative contribution from protein refolding. This correction is obtained by differential scanning calorimetric melting of the free DNA-binding domain. Corrected enthalpies are finally combined with accurate Gibbs energies to yield the entropy factor (TDeltaS) at various temperatures. Gibbs energies can be separated into electrostatic and non-electrostatic contributions from the ionic strength dependence of the binding constant.
要理解驱动蛋白质/DNA复合物形成的力量,需要测量缔合吉布斯自由能(ΔG)及其焓变(ΔH)和熵变(ΔS)分量。等温滴定量热法可提供结合反应的焓(热)以及缔合常数的估计值(前提是缔合常数不太高)。在几个温度下重复等温滴定量热实验可得到热容变化量ΔCp,这是一个重要的量,可用于将焓和熵外推到实验范围之外的温度。结合常数,即吉布斯自由能,最好通过光学方法(如在各组分最大程度折叠的温度下进行荧光检测)来获得。由于DNA结合结构域在生理温度下往往部分展开,因此可能需要对等温滴定量热法观察到的结合焓进行校正,以消除蛋白质重折叠带来的负贡献。这种校正可通过对游离DNA结合结构域进行差示扫描量热熔解来获得。最终将校正后的焓与精确的吉布斯自由能相结合,以得到不同温度下的熵因子(TΔS)。根据结合常数对离子强度的依赖性,吉布斯自由能可分为静电贡献和非静电贡献。