Mertens Jelle, Broos Kris, Wakelin Steven A, Kowalchuk George A, Springael Dirk, Smolders Erik
Division of Soil and Water Management, Katholieke Universiteit Leuven, Heverlee, Belgium.
ISME J. 2009 Aug;3(8):916-23. doi: 10.1038/ismej.2009.39. Epub 2009 Apr 23.
Biological ammonia oxidation had long been thought to be mediated solely by discrete clades of beta- and gamma-proteobacteria (ammonia-oxidizing bacteria; AOB). However, ammonia-oxidizing Crenarchaeota (ammonia-oxidizing archaea; AOA) have recently been identified and proposed to be the dominant agents of ammonia oxidation in soils. Nevertheless, the dynamics of AOB versus AOA, and their relative contribution to soil ammonia oxidation and ecosystem functioning on stress and environmental perturbation, remain unknown. Using a 3-year longitudinal field study and the amoA gene as a molecular marker, we demonstrate that AOB, but not AOA, mediate recovery of nitrification after zinc (Zn) contamination. Pristine soils showed approximately equal amoA gene copy numbers and transcript levels for AOB and AOA. At an intermediate Zn dose (33.7 mmol Zn per kg), ammonia oxidation was completely inhibited, and the numbers of AOB and AOA amoA gene copies and gene transcripts were reduced. After 2 years, ammonia oxidation in the field soils was fully restored to preexposure levels, and this restoration of function was concomitant with an increase of AOB amoA gene copy and gene transcript numbers. Analysis of the restored community revealed domination by a phylogenetically distinct Zn-tolerant Nitrosospira sp. community. In contrast, the numbers of AOA amoA gene copies and gene transcripts remained 3- and 10(4)-fold lower than recovered AOB values, respectively. Thus, although recent findings have emphasized a dominant role of archaea in soil-borne ammonia oxidation, we demonstrate that a phylogenetic shift within the AOB community drives recovery of nitrification from Zn contamination in this soil.
长期以来,生物氨氧化一直被认为仅由β-和γ-变形菌纲(氨氧化细菌;AOB)的离散进化枝介导。然而,氨氧化泉古菌(氨氧化古菌;AOA)最近已被鉴定出来,并被认为是土壤中氨氧化的主要介质。尽管如此,AOB与AOA的动态变化,以及它们在胁迫和环境扰动下对土壤氨氧化和生态系统功能的相对贡献仍然未知。通过一项为期3年的纵向田间研究,并以amoA基因作为分子标记,我们证明是AOB而非AOA介导了锌(Zn)污染后硝化作用的恢复。原始土壤中AOB和AOA的amoA基因拷贝数和转录水平大致相等。在中等锌剂量(每千克33.7 mmol锌)下,氨氧化被完全抑制,AOB和AOA的amoA基因拷贝数和基因转录本数量减少。2年后,田间土壤中的氨氧化完全恢复到暴露前水平,这种功能恢复与AOB的amoA基因拷贝数和基因转录本数量的增加同时发生。对恢复后的群落分析显示,一个系统发育上不同的耐锌亚硝化螺菌属群落占主导地位。相比之下,AOA的amoA基因拷贝数和基因转录本数量分别比恢复后的AOB值低3倍和10⁴倍。因此,尽管最近的研究结果强调了古菌在土壤氨氧化中的主导作用,但我们证明AOB群落内的系统发育转变驱动了该土壤中锌污染后硝化作用的恢复。