Suppr超能文献

一种用于实时疾病诊断的多模态光谱系统。

A multimodal spectroscopy system for real-time disease diagnosis.

作者信息

Sćepanović Obrad R, Volynskaya Zoya, Kong Chae-Ryon, Galindo Luis H, Dasari Ramachandra R, Feld Michael S

机构信息

George R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Ave 6-205, Cambridge, Massachusetts 02139, USA.

出版信息

Rev Sci Instrum. 2009 Apr;80(4):043103. doi: 10.1063/1.3117832.

Abstract

The combination of reflectance, fluorescence, and Raman spectroscopy-termed multimodal spectroscopy (MMS)-provides complementary and depth-sensitive information about tissue composition. As such, MMS is a promising tool for disease diagnosis, particularly in atherosclerosis and breast cancer. We have developed an integrated MMS instrument and optical fiber spectral probe for simultaneous collection of all three modalities in a clinical setting. The MMS instrument multiplexes three excitation sources, a xenon flash lamp (370-740 nm), a nitrogen laser (337 nm), and a diode laser (830 nm), through the MMS probe to excite tissue and collect the spectra. The spectra are recorded on two spectrograph/charge-coupled device modules, one optimized for visible wavelengths (reflectance and fluorescence) and the other for the near-infrared (Raman), and processed to provide diagnostic parameters. We also describe the design and calibration of a unitary MMS optical fiber probe 2 mm in outer diameter, containing a single appropriately filtered excitation fiber and a ring of 15 collection fibers, with separate groups of appropriately filtered fibers for efficiently collecting reflectance, fluorescence, and Raman spectra from the same tissue location. A probe with this excitation/collection geometry has not been used previously to collect reflectance and fluorescence spectra, and thus physical tissue models ("phantoms") are used to characterize the probe's spectroscopic response. This calibration provides probe-specific modeling parameters that enable accurate extraction of spectral parameters. This clinical MMS system has been used recently to analyze artery and breast tissue in vivo and ex vivo.

摘要

反射光谱、荧光光谱和拉曼光谱相结合——即多模态光谱(MMS)——可提供有关组织成分的互补且深度敏感的信息。因此,MMS是一种很有前景的疾病诊断工具,尤其在动脉粥样硬化和乳腺癌诊断方面。我们开发了一种集成的MMS仪器和光纤光谱探头,用于在临床环境中同时采集所有三种模态的数据。MMS仪器通过MMS探头将三个激发源(氙闪光灯(370 - 740 nm)、氮激光器(337 nm)和二极管激光器(830 nm))进行多路复用,以激发组织并采集光谱。光谱记录在两个光谱仪/电荷耦合器件模块上,一个针对可见波长(反射光谱和荧光光谱)进行了优化,另一个针对近红外(拉曼光谱)进行了优化,并对其进行处理以提供诊断参数。我们还描述了一种外径为2 mm的一体式MMS光纤探头的设计和校准,该探头包含一根经过适当滤波的激发光纤和一圈15根采集光纤,还有单独的经过适当滤波的光纤组,用于从同一组织位置高效采集反射光谱、荧光光谱和拉曼光谱。以前尚未使用过具有这种激发/采集几何结构的探头来采集反射光谱和荧光光谱,因此使用物理组织模型(“仿体”)来表征探头的光谱响应。这种校准提供了特定于探头的建模参数,从而能够准确提取光谱参数。这种临床MMS系统最近已用于体内和体外分析动脉和乳腺组织。

相似文献

1
A multimodal spectroscopy system for real-time disease diagnosis.
Rev Sci Instrum. 2009 Apr;80(4):043103. doi: 10.1063/1.3117832.
2
Multimodal spectroscopy detects features of vulnerable atherosclerotic plaque.
J Biomed Opt. 2011 Jan-Feb;16(1):011009. doi: 10.1117/1.3525287.
3
Use of a multiseparation fiber optic probe for the optical diagnosis of breast cancer.
J Biomed Opt. 2005 Mar-Apr;10(2):024032. doi: 10.1117/1.1897398.
5
Combined fluorescence-Raman spectroscopic setup for the diagnosis of melanocytic lesions.
J Biophotonics. 2014 Jan;7(1-2):86-95. doi: 10.1002/jbio.201200230. Epub 2013 Feb 8.
6
Combined fiber probe for fluorescence lifetime and Raman spectroscopy.
Anal Bioanal Chem. 2015 Nov;407(27):8291-301. doi: 10.1007/s00216-015-8800-5. Epub 2015 Jun 21.
8
In vivo assessment of bladder cancer with diffuse reflectance and fluorescence spectroscopy: A comparative study.
Lasers Surg Med. 2024 Jul;56(5):496-507. doi: 10.1002/lsm.23788. Epub 2024 Apr 22.
10
Real-time Raman system for in vivo disease diagnosis.
J Biomed Opt. 2005 May-Jun;10(3):031113. doi: 10.1117/1.1920247.

引用本文的文献

1
Design and Validation of a Multimodal Diffuse Reflectance and Spatially Offset Raman Spectroscopy System for In Vivo Applications.
J Biophotonics. 2025 Mar;18(3):e202400333. doi: 10.1002/jbio.202400333. Epub 2024 Dec 25.
2
Multimodal fiber probe for simultaneous mid-infrared and Raman spectroscopy.
Sci Rep. 2024 Mar 28;14(1):7430. doi: 10.1038/s41598-024-57539-4.
4
Rise of Raman spectroscopy in neurosurgery: a review.
J Biomed Opt. 2020 May;25(5):1-36. doi: 10.1117/1.JBO.25.5.050901.
7
Combining high wavenumber and fingerprint Raman spectroscopy for the detection of prostate cancer during radical prostatectomy.
Biomed Opt Express. 2018 Aug 15;9(9):4294-4305. doi: 10.1364/BOE.9.004294. eCollection 2018 Sep 1.
8
Raman Plus X: Biomedical Applications of Multimodal Raman Spectroscopy.
Sensors (Basel). 2017 Jul 7;17(7):1592. doi: 10.3390/s17071592.
10
Linear and Non-Linear Optical Imaging of Cancer Cells with Silicon Nanoparticles.
Int J Mol Sci. 2016 Sep 12;17(9):1536. doi: 10.3390/ijms17091536.

本文引用的文献

1
Raman spectroscopy for the detection of cancers and precancers.
J Biomed Opt. 1996 Jan;1(1):31-70. doi: 10.1117/12.227815.
2
Rapid multiexcitation fluorescence spectroscopy system for in vivo tissue diagnosis.
Appl Opt. 1996 Sep 1;35(25):5211-9. doi: 10.1364/AO.35.005211.
3
Analytical model for extracting intrinsic fluorescence in turbid media.
Appl Opt. 1993 Jul 1;32(19):3585-95. doi: 10.1364/AO.32.003585.
4
Fluorescence spectroscopy of turbid media: Autofluorescence of the human aorta.
Appl Opt. 1989 Oct 15;28(20):4286-92. doi: 10.1364/AO.28.004286.
5
Development of a handheld Raman microspectrometer for clinical dermatologic applications.
Opt Express. 2007 Sep 17;15(19):11874-82. doi: 10.1364/oe.15.011874.
6
Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue.
Opt Express. 2005 Jan 24;13(2):382-8. doi: 10.1364/opex.13.000382.
7
Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo.
Appl Opt. 1999 Nov 1;38(31):6628-37. doi: 10.1364/ao.38.006628.
8
Turbidity-free fluorescence spectroscopy of biological tissue.
Opt Lett. 2000 Oct 1;25(19):1451-3. doi: 10.1364/ol.25.001451.
9
Blood analysis by Raman spectroscopy.
Opt Lett. 2002 Nov 15;27(22):2004-6. doi: 10.1364/ol.27.002004.
10
Early detection of cervical neoplasia by Raman spectroscopy.
Int J Cancer. 2007 Dec 15;121(12):2723-8. doi: 10.1002/ijc.23046.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验