Sćepanović Obrad R, Volynskaya Zoya, Kong Chae-Ryon, Galindo Luis H, Dasari Ramachandra R, Feld Michael S
George R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, 77 Massachusetts Ave 6-205, Cambridge, Massachusetts 02139, USA.
Rev Sci Instrum. 2009 Apr;80(4):043103. doi: 10.1063/1.3117832.
The combination of reflectance, fluorescence, and Raman spectroscopy-termed multimodal spectroscopy (MMS)-provides complementary and depth-sensitive information about tissue composition. As such, MMS is a promising tool for disease diagnosis, particularly in atherosclerosis and breast cancer. We have developed an integrated MMS instrument and optical fiber spectral probe for simultaneous collection of all three modalities in a clinical setting. The MMS instrument multiplexes three excitation sources, a xenon flash lamp (370-740 nm), a nitrogen laser (337 nm), and a diode laser (830 nm), through the MMS probe to excite tissue and collect the spectra. The spectra are recorded on two spectrograph/charge-coupled device modules, one optimized for visible wavelengths (reflectance and fluorescence) and the other for the near-infrared (Raman), and processed to provide diagnostic parameters. We also describe the design and calibration of a unitary MMS optical fiber probe 2 mm in outer diameter, containing a single appropriately filtered excitation fiber and a ring of 15 collection fibers, with separate groups of appropriately filtered fibers for efficiently collecting reflectance, fluorescence, and Raman spectra from the same tissue location. A probe with this excitation/collection geometry has not been used previously to collect reflectance and fluorescence spectra, and thus physical tissue models ("phantoms") are used to characterize the probe's spectroscopic response. This calibration provides probe-specific modeling parameters that enable accurate extraction of spectral parameters. This clinical MMS system has been used recently to analyze artery and breast tissue in vivo and ex vivo.
反射光谱、荧光光谱和拉曼光谱相结合——即多模态光谱(MMS)——可提供有关组织成分的互补且深度敏感的信息。因此,MMS是一种很有前景的疾病诊断工具,尤其在动脉粥样硬化和乳腺癌诊断方面。我们开发了一种集成的MMS仪器和光纤光谱探头,用于在临床环境中同时采集所有三种模态的数据。MMS仪器通过MMS探头将三个激发源(氙闪光灯(370 - 740 nm)、氮激光器(337 nm)和二极管激光器(830 nm))进行多路复用,以激发组织并采集光谱。光谱记录在两个光谱仪/电荷耦合器件模块上,一个针对可见波长(反射光谱和荧光光谱)进行了优化,另一个针对近红外(拉曼光谱)进行了优化,并对其进行处理以提供诊断参数。我们还描述了一种外径为2 mm的一体式MMS光纤探头的设计和校准,该探头包含一根经过适当滤波的激发光纤和一圈15根采集光纤,还有单独的经过适当滤波的光纤组,用于从同一组织位置高效采集反射光谱、荧光光谱和拉曼光谱。以前尚未使用过具有这种激发/采集几何结构的探头来采集反射光谱和荧光光谱,因此使用物理组织模型(“仿体”)来表征探头的光谱响应。这种校准提供了特定于探头的建模参数,从而能够准确提取光谱参数。这种临床MMS系统最近已用于体内和体外分析动脉和乳腺组织。