Human Performance Laboratory, Faculty of Kinesiology, The University of Calgary, Calgary, AB, Canada T2N 1N4.
J Theor Biol. 2009 Aug 21;259(4):695-700. doi: 10.1016/j.jtbi.2009.04.014. Epub 2009 May 4.
In biomechanics, musculoskeletal models are typically redundant. This situation is referred to as the distribution problem. Often, static, non-linear optimisation methods of the form "min: phi(f) subject to mechanical and muscular constraints" have been used to extract a unique set of muscle forces. Here, we present a method for validating this class of non-linear optimisation approaches where the homogeneous cost function, phi(f), is used to solve the distribution problem. We show that the predicted muscle forces for different loading conditions are scaled versions of each other if the joint loading conditions are just scaled versions. Therefore, we can calculate the theoretical muscle forces for different experimental conditions based on the measured muscle forces and joint loadings taken from one experimental condition and assuming that all input into the optimisation (e.g., moment arms, muscle attachment sites, size, fibre type distribution) and the optimisation approach are perfectly correct. Thus predictions of muscle force for other experimental conditions are accurate if the optimisation approach is appropriate, independent of the musculoskeletal geometry and other input required for the optimisation procedure. By comparing the muscle forces predicted in this way to the actual muscle forces obtained experimentally, we conclude that convex homogeneous non-linear optimisation approaches cannot predict individual muscle forces properly, as force-sharing among synergistic muscles obtained experimentally are not just scaled versions of joint loading, not even in a first approximation.
在生物力学中,肌肉骨骼模型通常是冗余的。这种情况被称为分布问题。通常,采用“最小化:phi(f) 满足力学和肌肉约束”形式的静态非线性优化方法来提取一组独特的肌肉力量。在这里,我们提出了一种验证这种类非线性优化方法的方法,其中同质代价函数 phi(f) 用于解决分布问题。我们表明,如果关节加载条件只是比例变化,那么不同加载条件下的预测肌肉力量是彼此的比例版本。因此,我们可以根据从一种实验条件中测量的肌肉力量和关节载荷,以及假设优化(例如,力矩臂、肌肉附着点、大小、纤维类型分布)和优化方法完全正确,计算不同实验条件下的理论肌肉力量。因此,如果优化方法合适,那么对于其他实验条件的肌肉力量预测是准确的,而与优化过程所需的肌肉骨骼几何形状和其他输入无关。通过将以这种方式预测的肌肉力量与实验中实际获得的肌肉力量进行比较,我们得出结论,凸同质非线性优化方法不能正确预测单个肌肉力量,因为协同肌肉之间的力共享不仅仅是关节载荷的比例版本,即使在第一近似值中也是如此。