Suppr超能文献

VeA和LaeA在黄曲霉发育和致病机制中的不同作用。

Distinct roles for VeA and LaeA in development and pathogenesis of Aspergillus flavus.

作者信息

Amaike Saori, Keller Nancy P

机构信息

Department of Plant Patholog, University of Wisconsin-Madison, Wisconsin 53706-1598, USA.

出版信息

Eukaryot Cell. 2009 Jul;8(7):1051-60. doi: 10.1128/EC.00088-09. Epub 2009 May 1.

Abstract

Aspergillus flavus, a mycotoxigenic filamentous fungus, colonizes several important agricultural crops, such as maize and peanuts. Two proteins, VeA and LaeA, known to form a nuclear complex in Aspergillus nidulans have been found to positively regulate developmental processes in several Aspergillus species. Here, an examination of near-isogenic A. flavus mutants differing in copy number of veA and laeA alleles (0, 1, or at least 2 each) revealed critical roles for VeA and LaeA in A. flavus development and seed colonization. In contrast to the wild type, both null mutants were unable to metabolize host cell lipid reserves and were inhibited by oleic acid in growth assays. The copy number of LaeA but not VeA appeared critical for a density-dependent sclerotial-to-conidial shift, since the multicopy laeA (MClaeA) strain produced relatively constant sclerotial numbers with increasing population size rather than showing the decrease in sclerotia seen in both the wild-type and MCveA strains. The MCveA-laeA strain yielded an intermediate phenotype. This study revealed unique roles of VeA and LaeA in seed pathogenesis and fungal biology, distinct from their cooperative regulatory functions in aflatoxin and sclerotial development.

摘要

黄曲霉是一种能产生霉菌毒素的丝状真菌,可侵染多种重要农作物,如玉米和花生。已知在构巢曲霉中形成核复合物的两种蛋白质VeA和LaeA,已被发现在几种曲霉属物种中对发育过程具有正向调节作用。在此,对veA和laeA等位基因拷贝数不同(分别为0、1或至少2个)的近等基因黄曲霉菌株进行研究,揭示了VeA和LaeA在黄曲霉发育和种子定殖中的关键作用。与野生型相比,两种缺失突变体均无法代谢宿主细胞脂质储备,且在生长试验中受到油酸抑制。LaeA而非VeA的拷贝数对于密度依赖性菌核到分生孢子的转变似乎至关重要,因为多拷贝laeA(MClaeA)菌株随着种群规模的增加产生相对恒定的菌核数量,而不是像野生型和MCveA菌株那样菌核数量减少。MCveA-laeA菌株产生中间表型。这项研究揭示了VeA和LaeA在种子致病机制和真菌生物学中的独特作用,这与它们在黄曲霉毒素和菌核发育中的协同调节功能不同。

相似文献

1
Distinct roles for VeA and LaeA in development and pathogenesis of Aspergillus flavus.
Eukaryot Cell. 2009 Jul;8(7):1051-60. doi: 10.1128/EC.00088-09. Epub 2009 May 1.
2
Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus.
Fungal Genet Biol. 2008 Oct;45(10):1422-9. doi: 10.1016/j.fgb.2008.06.009. Epub 2008 Jul 11.
3
Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production.
Fungal Genet Biol. 2013 Sep-Oct;58-59:71-9. doi: 10.1016/j.fgb.2013.08.009. Epub 2013 Aug 29.
4
New Insights of Transcriptional Regulator AflR in Aspergillus flavus Physiology.
Microbiol Spectr. 2022 Feb 23;10(1):e0079121. doi: 10.1128/spectrum.00791-21. Epub 2022 Jan 26.
6
The bZIP protein MeaB mediates virulence attributes in Aspergillus flavus.
PLoS One. 2013 Sep 9;8(9):e74030. doi: 10.1371/journal.pone.0074030. eCollection 2013.
7
rtfA, a putative RNA-Pol II transcription elongation factor gene, is necessary for normal morphological and chemical development in Aspergillus flavus.
Appl Microbiol Biotechnol. 2016 Jun;100(11):5029-41. doi: 10.1007/s00253-016-7418-7. Epub 2016 Mar 28.
8
Elucidation of veA-dependent genes associated with aflatoxin and sclerotial production in Aspergillus flavus by functional genomics.
Appl Microbiol Biotechnol. 2007 Oct;76(5):1107-18. doi: 10.1007/s00253-007-1081-y. Epub 2007 Jul 24.
9
The Aspergillus flavus fluP-associated metabolite promotes sclerotial production.
Fungal Biol. 2016 Oct;120(10):1258-68. doi: 10.1016/j.funbio.2016.07.010. Epub 2016 Jul 30.
10
The role of the VosA-repressed dnjA gene in development and metabolism in Aspergillus species.
Curr Genet. 2020 Jun;66(3):621-633. doi: 10.1007/s00294-020-01058-y. Epub 2020 Feb 14.

引用本文的文献

1
Emerging Strategies for Aflatoxin Resistance in Peanuts via Precision Breeding.
Toxins (Basel). 2025 Aug 6;17(8):394. doi: 10.3390/toxins17080394.
2
An environmental isolate of , 20EI1, reduces growth in an iron-dependent manner and alters secondary metabolism.
Front Microbiol. 2025 Jan 20;15:1514950. doi: 10.3389/fmicb.2024.1514950. eCollection 2024.
3
Fungal chemical warfare: the role of aflatoxin and fumonisin in governing the interaction between the maize pathogens, and .
Front Cell Infect Microbiol. 2025 Jan 3;14:1513134. doi: 10.3389/fcimb.2024.1513134. eCollection 2024.
4
Beyond morphogenesis and secondary metabolism: function of Velvet proteins and LaeA in fungal pathogenesis.
Appl Environ Microbiol. 2024 Oct 23;90(10):e0081924. doi: 10.1128/aem.00819-24. Epub 2024 Sep 4.
6
Exploring the Biocontrol Capability of Non-Mycotoxigenic Strains of .
Toxins (Basel). 2024 Jan 17;16(1):52. doi: 10.3390/toxins16010052.
7
A New Benzaldehyde Derivative Exhibits Antiaflatoxigenic Activity against .
J Fungi (Basel). 2023 Nov 12;9(11):1103. doi: 10.3390/jof9111103.
10
Light regulation of secondary metabolism in fungi.
J Biol Eng. 2023 Aug 31;17(1):57. doi: 10.1186/s13036-023-00374-4.

本文引用的文献

1
Aspergillus flavus: the major producer of aflatoxin.
Mol Plant Pathol. 2007 Nov;8(6):713-22. doi: 10.1111/j.1364-3703.2007.00436.x.
2
Oxygenase coordination is required for morphological transition and the host-fungus interaction of Aspergillus flavus.
Mol Plant Microbe Interact. 2009 Jul;22(7):882-94. doi: 10.1094/MPMI-22-7-0882.
3
Genetic regulation of aflatoxin biosynthesis: from gene to genome.
Fungal Genet Biol. 2009 Feb;46(2):113-25. doi: 10.1016/j.fgb.2008.10.011. Epub 2008 Nov 5.
4
Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus.
Fungal Genet Biol. 2008 Oct;45(10):1422-9. doi: 10.1016/j.fgb.2008.06.009. Epub 2008 Jul 11.
5
Morphological transitions governed by density dependence and lipoxygenase activity in Aspergillus flavus.
Appl Environ Microbiol. 2008 Sep;74(18):5674-85. doi: 10.1128/AEM.00565-08. Epub 2008 Jul 25.
6
VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism.
Science. 2008 Jun 13;320(5882):1504-6. doi: 10.1126/science.1155888.
7
Defects in conidiophore development and conidium-macrophage interactions in a dioxygenase mutant of Aspergillus fumigatus.
Infect Immun. 2008 Jul;76(7):3214-20. doi: 10.1128/IAI.00009-08. Epub 2008 Apr 28.
8
Reciprocal oxylipin-mediated cross-talk in the Aspergillus-seed pathosystem.
Mol Microbiol. 2008 Jan;67(2):378-91. doi: 10.1111/j.1365-2958.2007.06045.x.
9
Quorum sensing, communication and cross-kingdom signalling in the bacterial world.
Microbiology (Reading). 2007 Dec;153(Pt 12):3923-3938. doi: 10.1099/mic.0.2007/012856-0.
10
Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA.
PLoS Pathog. 2007 Apr;3(4):e50. doi: 10.1371/journal.ppat.0030050.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验