Pollet Annick, Vandermarliere Elien, Lammertyn Jeroen, Strelkov Sergei V, Delcour Jan A, Courtin Christophe M
Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre, Katholieke Universiteit Leuven, Kasteelpark Arenberg, B-3001 Leuven, Belgium.
Proteins. 2009 Nov 1;77(2):395-403. doi: 10.1002/prot.22445.
Enzyme intramolecular mobility and conformational changes of loops in particular play a significant role in biocatalysis. In this respect, the highly conserved thumb loop of glycoside hydrolase family (GH) 11 xylanases is an intriguing and characteristic structural element, of which the true dynamic nature and function in catalysis is still unknown. Crystallographic analysis of the structure of a Bacillus subtilis xylanase A mutant, found as a dimer in an asymmetric unit, revealed that the thumb region can adopt an extended conformation, which is stabilized in the crystal lattice through intermolecular contacts. In contrast to the closed thumb conformation of GH11 xylanases and the previously observed small conformational changes upon substrate binding, a relocation of the tip of the thumb of more than 15 A was observed. Site-directed mutagenesis of five thumb residues, including putative hinge point residues, and enzyme kinetics assays showed that Arg112, Asn114, and Thr126 play a role in the open-close thumb movement. Replacement of Arg112 by glycine or proline caused a strong decrease of turnover numbers and elevated Michaelis constants on xylan. Mutant N114P hindered thumb movement, provoking a fourfold decrease of turnover numbers and a sharp rise in Michaelis constants, whereas the proline mutant of Thr126 displayed an increase in specific activity. The observation that extensive thumb opening is possible combined with the kinetic data suggests that the thumb plays a crucial role in both binding of substrate and release of product from the active site.
酶的分子内流动性,尤其是环的构象变化在生物催化中起着重要作用。在这方面,糖苷水解酶家族(GH)11木聚糖酶高度保守的拇指环是一个有趣且具有特征性的结构元件,其在催化中的真正动态性质和功能仍不清楚。对枯草芽孢杆菌木聚糖酶A突变体结构的晶体学分析发现,该突变体在不对称单元中以二聚体形式存在,结果表明拇指区域可以采取伸展构象,该构象通过分子间接触在晶格中得以稳定。与GH11木聚糖酶的闭合拇指构象以及先前观察到的底物结合时的小构象变化不同,观察到拇指尖端移动了超过15埃。对包括假定铰链点残基在内的五个拇指残基进行定点诱变,并进行酶动力学测定,结果表明精氨酸112、天冬酰胺114和苏氨酸126在拇指的开合运动中起作用。用甘氨酸或脯氨酸取代精氨酸112会导致木聚糖的周转数大幅下降,米氏常数升高。突变体N114P阻碍了拇指运动,导致周转数下降四倍,米氏常数急剧上升,而苏氨酸126的脯氨酸突变体则显示比活性增加。广泛的拇指打开是可能的这一观察结果与动力学数据相结合,表明拇指在底物结合和产物从活性位点释放中都起着关键作用。