Suppr超能文献

运动期间通气对脑氧合的影响:典型相关分析的见解

Effect of ventilation on cerebral oxygenation during exercise: insights from canonical correlation.

作者信息

Heine Martin, Subudhi Andrew W, Roach Robert C

机构信息

Altitude Research Center, University of Colorado, Denver, CO, United States.

出版信息

Respir Physiol Neurobiol. 2009 Apr 30;166(2):125-8. doi: 10.1016/j.resp.2009.02.013. Epub 2009 Mar 5.

Abstract

We tested hypothesis that cerebral deoxygenation near maximal exercise intensity is mediated by hyperventilation, via hypocapnia-induced reductions in cerebral blood flow, by utilizing canonical correlation analysis (CCA) to determine the relative influence of cardiopulmonary changes on cerebral oxygenation, as assessed by near infrared spectroscopy (NIRS). Twenty-three subjects performed incremental exercise tests under normoxic and hypoxic conditions. Changes in ventilation (V (E)) were strongly correlated with end-tidal CO(2) (P(ET)(CO)(2)) and NIRS after the respiratory compensation point (RCP) (r(2)>0.97). However, in contrast to our expectations, CBF velocity (CBFv) shared the least amount of variance with NIRS measurements (r(2)<0.56) and the reduction in CBFv was not accompanied by a reduction in cerebral blood volume. These results demonstrate that while cerebral deoxygenation was associated with hyperventilation, it was not solely explained by hypocapnia-induced reductions in CBFv. CCA revealed that a relative increase in the venous contribution to NIRS explained a larger amount of variation in cerebral oxygenation than reductions CBFv.

摘要

我们通过利用典型相关分析(CCA)来确定心肺变化对脑氧合的相对影响(通过近红外光谱法(NIRS)评估),检验了以下假设:接近最大运动强度时的脑脱氧是由过度通气介导的,通过低碳酸血症引起的脑血流量减少来实现。23名受试者在常氧和低氧条件下进行递增运动测试。呼吸补偿点(RCP)后,通气变化(V(E))与呼气末二氧化碳(P(ET)(CO)(2))和NIRS密切相关(r(2)>0.97)。然而,与我们的预期相反,脑血流速度(CBFv)与NIRS测量值的方差共享量最少(r(2)<0.56),并且CBFv的降低并未伴随着脑血容量的减少。这些结果表明,虽然脑脱氧与过度通气有关,但它不能仅由低碳酸血症引起的CBFv降低来解释。CCA显示,静脉对NIRS贡献的相对增加比CBFv降低能解释更多的脑氧合变化。

相似文献

1
Effect of ventilation on cerebral oxygenation during exercise: insights from canonical correlation.
Respir Physiol Neurobiol. 2009 Apr 30;166(2):125-8. doi: 10.1016/j.resp.2009.02.013. Epub 2009 Mar 5.
2
Cerebral and muscle deoxygenation, hypoxic ventilatory chemosensitivity and cerebrovascular responsiveness during incremental exercise.
Respir Physiol Neurobiol. 2009 Oct 31;169(1):24-35. doi: 10.1016/j.resp.2009.08.013. Epub 2009 Sep 1.
3
Hypocapnia during hypoxic exercise and its impact on cerebral oxygenation, ventilation and maximal whole body O₂ uptake.
Respir Physiol Neurobiol. 2013 Jan 15;185(2):461-7. doi: 10.1016/j.resp.2012.08.012. Epub 2012 Aug 24.
4
Cerebral blood flow and oxygenation at maximal exercise: the effect of clamping carbon dioxide.
Respir Physiol Neurobiol. 2011 Jan 31;175(1):176-80. doi: 10.1016/j.resp.2010.09.011. Epub 2010 Sep 25.
5
Effect of ageing on hypoxic exercise cardiorespiratory, muscle and cerebral oxygenation responses in healthy humans.
Exp Physiol. 2017 Apr 1;102(4):436-447. doi: 10.1113/EP085949. Epub 2017 Feb 28.
6
Does cerebral oxygen delivery limit incremental exercise performance?
J Appl Physiol (1985). 2011 Dec;111(6):1727-34. doi: 10.1152/japplphysiol.00569.2011. Epub 2011 Sep 15.
7
Cerebral hypoperfusion during hypoxic exercise following two different hypoxic exposures: independence from changes in dynamic autoregulation and reactivity.
Am J Physiol Regul Integr Comp Physiol. 2008 Nov;295(5):R1613-22. doi: 10.1152/ajpregu.90420.2008. Epub 2008 Sep 3.
9
Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise.
J Appl Physiol (1985). 2007 Jul;103(1):177-83. doi: 10.1152/japplphysiol.01460.2006. Epub 2007 Apr 12.
10
Kinetics of exercise-induced neural activation; interpretive dilemma of altered cerebral perfusion.
Exp Physiol. 2012 Feb;97(2):219-27. doi: 10.1113/expphysiol.2011.061978. Epub 2011 Oct 31.

引用本文的文献

1
Shining new light on mammalian diving physiology using wearable near-infrared spectroscopy.
PLoS Biol. 2019 Jun 18;17(6):e3000306. doi: 10.1371/journal.pbio.3000306. eCollection 2019 Jun.
2
Cerebral blood flow and oxygenation at maximal exercise: the effect of clamping carbon dioxide.
Respir Physiol Neurobiol. 2011 Jan 31;175(1):176-80. doi: 10.1016/j.resp.2010.09.011. Epub 2010 Sep 25.

本文引用的文献

1
Cranial venous outflow under lower body positive and negative pressure conditions and head-up and -down tilts.
J Neuroimaging. 2009 Jan;19(1):31-6. doi: 10.1111/j.1552-6569.2008.00250.x. Epub 2008 Sep 16.
2
Cerebrovascular responses to incremental exercise during hypobaric hypoxia: effect of oxygenation on maximal performance.
Am J Physiol Heart Circ Physiol. 2008 Jan;294(1):H164-71. doi: 10.1152/ajpheart.01104.2007. Epub 2007 Nov 21.
3
Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise.
Eur J Appl Physiol. 2008 Jan;102(2):153-63. doi: 10.1007/s00421-007-0568-7. Epub 2007 Sep 20.
4
Regulation of cerebral blood flow during exercise.
Sports Med. 2007;37(9):765-82. doi: 10.2165/00007256-200737090-00002.
5
Inspiratory muscle work in acute hypoxia influences locomotor muscle fatigue and exercise performance of healthy humans.
Am J Physiol Regul Integr Comp Physiol. 2007 Nov;293(5):R2036-45. doi: 10.1152/ajpregu.00442.2007. Epub 2007 Aug 22.
6
Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise.
J Appl Physiol (1985). 2007 Jul;103(1):177-83. doi: 10.1152/japplphysiol.01460.2006. Epub 2007 Apr 12.
7
Cerebral oxygenation declines at exercise intensities above the respiratory compensation threshold.
Respir Physiol Neurobiol. 2007 May 14;156(2):196-202. doi: 10.1016/j.resp.2006.08.009. Epub 2006 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验