Hutnick Leah K, Golshani Peyman, Namihira Masakasu, Xue Zhigang, Matynia Anna, Yang X William, Silva Alcino J, Schweizer Felix E, Fan Guoping
Department of Human Genetics, David Geffen School of Medicine, University of California at Los Angeles, 695 Charles Young Drive South, Los Angeles, CA 90095, USA.
Hum Mol Genet. 2009 Aug 1;18(15):2875-88. doi: 10.1093/hmg/ddp222. Epub 2009 May 10.
DNA methylation is a major epigenetic factor regulating genome reprogramming, cell differentiation and developmental gene expression. To understand the role of DNA methylation in central nervous system (CNS) neurons, we generated conditional Dnmt1 mutant mice that possess approximately 90% hypomethylated cortical and hippocampal cells in the dorsal forebrain from E13.5 on. The mutant mice were viable with a normal lifespan, but displayed severe neuronal cell death between E14.5 and three weeks postnatally. Accompanied with the striking cortical and hippocampal degeneration, adult mutant mice exhibited neurobehavioral defects in learning and memory in adulthood. Unexpectedly, a fraction of Dnmt1(-/-) cortical neurons survived throughout postnatal development, so that the residual cortex in mutant mice contained 20-30% of hypomethylated neurons across the lifespan. Hypomethylated excitatory neurons exhibited multiple defects in postnatal maturation including abnormal dendritic arborization and impaired neuronal excitability. The mutant phenotypes are coupled with deregulation of those genes involved in neuronal layer-specification, cell death and the function of ion channels. Our results suggest that DNA methylation, through its role in modulating neuronal gene expression, plays multiple roles in regulating cell survival and neuronal maturation in the CNS.
DNA甲基化是调控基因组重编程、细胞分化和发育基因表达的主要表观遗传因素。为了解DNA甲基化在中枢神经系统(CNS)神经元中的作用,我们构建了条件性Dnmt1突变小鼠,从胚胎第13.5天起,其背侧前脑的皮质和海马细胞中约90%处于低甲基化状态。突变小鼠存活且寿命正常,但在胚胎第14.5天至出生后三周期间出现严重的神经元细胞死亡。伴随着显著的皮质和海马变性,成年突变小鼠在成年期的学习和记忆方面表现出神经行为缺陷。出乎意料的是,一部分Dnmt1(-/-)皮质神经元在整个出生后发育过程中存活下来,因此突变小鼠残留的皮质在整个生命周期中含有20 - 30%的低甲基化神经元。低甲基化的兴奋性神经元在出生后成熟过程中表现出多种缺陷,包括异常的树突分支和受损的神经元兴奋性。突变表型与那些参与神经元层特异性、细胞死亡和离子通道功能的基因失调有关。我们的结果表明,DNA甲基化通过其在调节神经元基因表达中的作用,在调控中枢神经系统中的细胞存活和神经元成熟方面发挥多种作用。