Suppr超能文献

离子迁移谱中的库仑效应。

Coulombic effects in ion mobility spectrometry.

作者信息

Tolmachev Aleksey V, Clowers Brian H, Belov Mikhail E, Smith Richard D

机构信息

Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.

出版信息

Anal Chem. 2009 Jun 15;81(12):4778-87. doi: 10.1021/ac900329x.

Abstract

Ion mobility spectrometry (IMS) has been increasingly employed in a number of applications. When coupled to mass spectrometry (MS), IMS becomes a powerful analytical tool for separating complex samples and investigating molecular structure. Therefore, improvements in IMS-MS instrumentation, e.g., IMS resolving power and sensitivity, are highly desirable. Implementation of an ion trap for accumulation and pulsed ion injection to IMS based on the ion funnel has provided considerably increased ion currents and thus a basis for improved sensitivity and measurement throughput. However, large ion populations may manifest Coulombic effects contributing to the spatial dispersion of ions traveling in the IMS drift tube and reduction in the IMS resolving power. In this study, we present an analysis of Coulombic effects on IMS resolution. Basic relationships have been obtained for the spatial evolution of ion packets due to Coulombic repulsion. The analytical relationships were compared with results of a computer model that simulates IMS operation based on a first principles approach. Initial experimental results reported here are consistent with the computer modeling. A noticeable decrease in the IMS resolving power was observed for ion populations of >10,000 elementary charges. The optimum IMS operation conditions which would minimize the Coulombic effects are discussed.

摘要

离子迁移谱(IMS)已越来越多地应用于许多领域。当与质谱(MS)联用时,IMS成为分离复杂样品和研究分子结构的强大分析工具。因此,非常需要改进IMS-MS仪器,例如IMS的分辨率和灵敏度。基于离子漏斗实现用于离子积累和向IMS进行脉冲离子注入的离子阱,可显著提高离子电流,从而为提高灵敏度和测量通量奠定基础。然而,大量离子可能会表现出库仑效应,导致离子在IMS漂移管中传播时发生空间分散,并降低IMS分辨率。在本研究中,我们对库仑效应影响IMS分辨率进行了分析。已得出离子包因库仑排斥而产生空间演化的基本关系。将这些解析关系与基于第一性原理方法模拟IMS运行的计算机模型结果进行了比较。此处报告的初步实验结果与计算机模拟结果一致。对于大于10,000个基本电荷的离子群体,观察到IMS分辨率显著下降。讨论了可使库仑效应最小化的最佳IMS操作条件。

相似文献

1
Coulombic effects in ion mobility spectrometry.
Anal Chem. 2009 Jun 15;81(12):4778-87. doi: 10.1021/ac900329x.
2
Fundamentals of traveling wave ion mobility spectrometry.
Anal Chem. 2008 Dec 15;80(24):9689-99. doi: 10.1021/ac8016295.
3
Ultra-high-resolution ion mobility spectrometry-current instrumentation, limitations, and future developments.
Anal Bioanal Chem. 2019 Sep;411(24):6229-6246. doi: 10.1007/s00216-019-01807-0. Epub 2019 Apr 8.
4
An IMS-IMS analogue of MS-MS.
Anal Chem. 2006 Jun 15;78(12):4161-74. doi: 10.1021/ac051060w.
7
Ion mobility-mass spectrometry.
J Mass Spectrom. 2008 Jan;43(1):1-22. doi: 10.1002/jms.1383.
8
Ion mobility spectrometry (IMS) and IMS/MS.
J AOAC Int. 2009 Sep-Oct;92(5):163A-168A.
10
Two-dimensional ion mobility analyses of proteins and peptides.
Methods Mol Biol. 2009;492:417-45. doi: 10.1007/978-1-59745-493-3_26.

引用本文的文献

2
Potential of ion mobility-mass spectrometry for both targeted and non-targeted analysis of phase II steroid metabolites in urine.
Anal Chim Acta X. 2019 Jan 31;1:100006. doi: 10.1016/j.acax.2019.100006. eCollection 2019 Mar.
3
Assessment of Dimeric Metal-Glycan Adducts via Isotopic Labeling and Ion Mobility-Mass Spectrometry.
J Am Soc Mass Spectrom. 2018 Aug;29(8):1638-1649. doi: 10.1007/s13361-018-1982-2. Epub 2018 May 25.
4
Development of an Ion Mobility Spectrometry-Orbitrap Mass Spectrometer Platform.
Anal Chem. 2016 Dec 20;88(24):12152-12160. doi: 10.1021/acs.analchem.6b03027. Epub 2016 Dec 1.
5
Broadscale resolving power performance of a high precision uniform field ion mobility-mass spectrometer.
Analyst. 2015 Oct 21;140(20):6824-33. doi: 10.1039/c5an00923e. Epub 2015 Jul 20.
6
Characterization of ion dynamics in structures for lossless ion manipulations.
Anal Chem. 2014 Sep 16;86(18):9162-8. doi: 10.1021/ac502054p. Epub 2014 Sep 4.

本文引用的文献

1
Electrospray ionization high-resolution ion mobility spectrometry-mass spectrometry.
Anal Chem. 1998 Dec 1;70(23):4929-38. doi: 10.1021/ac980414z.
2
Effect of space charge on resolving power and ion loss in ion mobility spectrometry.
Anal Chem. 2009 May 1;81(9):3385-91. doi: 10.1021/ac802652f.
3
Predicting optimal resolving power for ambient pressure ion mobility spectrometry.
Anal Chem. 2008 Sep 1;80(17):6610-9. doi: 10.1021/ac8008143. Epub 2008 Aug 7.
4
Dynamically multiplexed ion mobility time-of-flight mass spectrometry.
Anal Chem. 2008 Aug 1;80(15):5873-83. doi: 10.1021/ac8003665. Epub 2008 Jun 18.
5
Ion mobility-mass spectrometry.
J Mass Spectrom. 2008 Jan;43(1):1-22. doi: 10.1002/jms.1383.
7
Ion funnel trap interface for orthogonal time-of-flight mass spectrometry.
Anal Chem. 2007 Oct 15;79(20):7845-52. doi: 10.1021/ac071091m. Epub 2007 Sep 13.
8
Ion mobility spectrometry-mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures.
J Am Soc Mass Spectrom. 2007 Jul;18(7):1176-87. doi: 10.1016/j.jasms.2007.03.031. Epub 2007 Apr 6.
9
Multiplexed ion mobility spectrometry-orthogonal time-of-flight mass spectrometry.
Anal Chem. 2007 Mar 15;79(6):2451-62. doi: 10.1021/ac0617316. Epub 2007 Feb 17.
10
Toward plasma proteome profiling with ion mobility-mass spectrometry.
J Proteome Res. 2006 Nov;5(11):2977-84. doi: 10.1021/pr060232i.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验