Bowerman Mélissa, Anderson Carrie L, Beauvais Ariane, Boyl Pietro Pilo, Witke Walter, Kothary Rashmi
Ottawa Hospital Research Institute, Ottawa, ON, Canada.
Mol Cell Neurosci. 2009 Sep;42(1):66-74. doi: 10.1016/j.mcn.2009.05.009. Epub 2009 Jun 1.
Spinal muscular atrophy (SMA) is the most common human genetic disease resulting in infant mortality. SMA is caused by mutations or deletions in the ubiquitously expressed survival motor neuron 1 (SMN1) gene. Why SMA specifically affects motor neurons remains poorly understood. We have shown that Smn deficient PC12 cells have increased levels of the neuronal profilin IIa protein, leading to an inappropriate activation of the RhoA/ROCK pathway. This suggests that mis-regulation of neuronal actin dynamics is central to SMA pathogenesis. Here, we demonstrate an increase in profilin IIa and a decrease in plastin 3 protein levels in a SMA mouse model. Furthermore, knock-out of profilin II upregulates plastin 3 expression in a Smn-dependent manner. However, the depletion of profilin II and the restoration of plastin 3 are not sufficient to rescue the SMA phenotype. Our study suggests that additional regulators of actin dynamics must also contribute to SMA pathogenesis.
脊髓性肌萎缩症(SMA)是导致婴儿死亡的最常见人类遗传疾病。SMA由普遍表达的生存运动神经元1(SMN1)基因的突变或缺失引起。SMA为何特别影响运动神经元仍知之甚少。我们已经表明,缺乏Smn的PC12细胞中神经元丝切蛋白IIa蛋白水平升高,导致RhoA/ROCK通路的不适当激活。这表明神经元肌动蛋白动力学的失调是SMA发病机制的核心。在此,我们证明在SMA小鼠模型中丝切蛋白IIa增加而丝束蛋白3蛋白水平降低。此外,敲除丝切蛋白II以Smn依赖的方式上调丝束蛋白3的表达。然而,丝切蛋白II的消耗和丝束蛋白3的恢复不足以挽救SMA表型。我们的研究表明,肌动蛋白动力学的其他调节因子也必定在SMA发病机制中起作用。