Gruber Todd D, Borrok M Jack, Westler William M, Forest Katrina T, Kiessling Laura L
Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706-1544, USA.
J Mol Biol. 2009 Aug 14;391(2):327-40. doi: 10.1016/j.jmb.2009.05.081. Epub 2009 Jun 3.
Galactofuranose (Galf) residues are present in cell wall glycoconjugates of numerous pathogenic microbes. Uridine 5'-diphosphate (UDP) Galf, the biosynthetic precursor of Galf-containing glycoconjugates, is produced from UDP-galactopyranose (UDP-Galp) by the flavoenzyme UDP-galactopyranose mutase (UGM). The gene encoding UGM (glf) is essential for the viability of pathogens, including Mycobacterium tuberculosis, and this finding underscores the need to understand how UGM functions. Considerable effort has been devoted to elucidating the catalytic mechanism of UGM, but progress has been hindered by a lack of structural data for an enzyme-substrate complex. Such data could reveal not only substrate binding interactions but how UGM can act preferentially on two very different substrates, UDP-Galp and UDP-Galf, yet avoid other structurally related UDP sugars present in the cell. Herein, we describe the first structure of a UGM-ligand complex, which provides insight into the catalytic mechanism and molecular basis for substrate selectivity. The structure of UGM from Klebsiella pneumoniae bound to the substrate analog UDP-glucose (UDP-Glc) was solved by X-ray crystallographic methods and refined to 2.5 A resolution. The ligand is proximal to the cofactor, a finding that is consistent with a proposed mechanism in which the reduced flavin engages in covalent catalysis. Despite this proximity, the glucose ring of the substrate analog is positioned such that it disfavors covalent catalysis. This orientation is consistent with data indicating that UDP-Glc is not a substrate for UGM. The relative binding orientations of UDP-Galp and UDP-Glc were compared using saturation transfer difference NMR. The results indicate that the uridine moiety occupies a similar location in both ligand complexes, and this relevant binding mode is defined by our structural data. In contrast, the orientations of the glucose and galactose sugar moieties differ. To understand the consequences of these differences, we derived a model for the productive UGM-substrate complex that highlights interactions that can contribute to catalysis and substrate discrimination.
呋喃半乳糖(Galf)残基存在于众多致病微生物的细胞壁糖缀合物中。含Galf的糖缀合物的生物合成前体尿苷5'-二磷酸(UDP)Galf是由黄素酶尿苷二磷酸吡喃半乳糖变位酶(UGM)从尿苷二磷酸吡喃半乳糖(UDP-Galp)产生的。编码UGM的基因(glf)对于包括结核分枝杆菌在内的病原体的生存能力至关重要,这一发现凸显了了解UGM功能的必要性。人们已经投入了大量精力来阐明UGM的催化机制,但由于缺乏酶-底物复合物的结构数据,进展受到了阻碍。这些数据不仅可以揭示底物结合相互作用,还能揭示UGM如何优先作用于两种非常不同的底物UDP-Galp和UDP-Galf,同时避免细胞中存在的其他结构相关的UDP糖。在此,我们描述了UGM-配体复合物的首个结构,该结构为催化机制和底物选择性的分子基础提供了见解。通过X射线晶体学方法解析了肺炎克雷伯菌的UGM与底物类似物尿苷二磷酸葡萄糖(UDP-Glc)结合的结构,并将其精修至2.5埃分辨率。配体靠近辅因子,这一发现与提出的还原黄素参与共价催化的机制一致。尽管距离相近,但底物类似物的葡萄糖环的定位不利于共价催化。这种取向与表明UDP-Glc不是UGM底物的数据一致。使用饱和转移差核磁共振比较了UDP-Galp和UDP-Glc的相对结合取向。结果表明,尿苷部分在两种配体复合物中占据相似的位置,这种相关的结合模式由我们的结构数据确定。相比之下,葡萄糖和半乳糖部分的取向不同。为了理解这些差异的后果,我们推导了一个有效的UGM-底物复合物模型,该模型突出了有助于催化和底物区分的相互作用。