Koslover Elena F, Spakowitz Andrew J
Biophysics Program, Stanford University, Stanford, California 94305, USA.
Phys Rev Lett. 2009 May 1;102(17):178102. doi: 10.1103/PhysRevLett.102.178102. Epub 2009 Apr 30.
We study the effective interaction between DNA-binding proteins that arises from elastic stresses in the DNA when tension is applied. Using the wormlike chain model, we calculate the free energy cost of introducing multiple nearby bends in the DNA. We find that the bend deformation energy promotes aggregation to straighten the linker DNA, while twist resistance of the linker leads to damped oscillations in the coupling free energy between two proteins. We calculate the mean first encounter time for proteins sliding along DNA, indicating, in some cases, an optimal applied tension for protein assembly. Our results highlight the need to consider DNA twist even when no torsion is applied and the DNA ends are free to rotate. The variable-range oscillatory coupling between DNA-binding proteins may provide a versatile mechanism for tension-mediated gene regulation.
我们研究了在施加张力时,DNA中弹性应力所产生的DNA结合蛋白之间的有效相互作用。使用蠕虫状链模型,我们计算了在DNA中引入多个相邻弯曲的自由能成本。我们发现弯曲变形能促进聚集以使连接DNA伸直,而连接体的抗扭转性导致两个蛋白质之间耦合自由能的阻尼振荡。我们计算了蛋白质沿DNA滑动的平均首次相遇时间,表明在某些情况下,存在蛋白质组装的最佳施加张力。我们的结果强调,即使不施加扭转且DNA末端可自由旋转时,也需要考虑DNA扭转。DNA结合蛋白之间的可变范围振荡耦合可能为张力介导的基因调控提供一种通用机制。