Dewhirst Sebastian, Lutscher Frithjof
Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Avenue, Ottawa, Ontario K1N 6N5, Canada.
Ecology. 2009 May;90(5):1338-45. doi: 10.1890/08-0115.1.
What is the effect of landscape heterogeneity on the spread rate of populations? Several spatially explicit simulation models address this question for particular cases and find qualitative insights (e.g., extinction thresholds) but no quantitative relationships. We use a time-discrete analytic model and find general quantitative relationships for the invasion threshold, i.e., the minimal percentage of suitable habitat required for population spread. We investigate how, on the relevant spatial scales, this threshold depends on the relationship between dispersal ability and fragmentation level. The invasion threshold increases with fragmentation level when there is no Allee effect, but it decreases with fragmentation in the presence of an Allee effect. We obtain simple formulas for the approximate spread rate of a population in heterogeneous landscapes from averaging techniques. Comparison with spatially explicit simulations shows an excellent agreement between approximate and true values. We apply our results to the spread of trees and give some implications for the control of invasive species.
景观异质性对种群扩散速率有何影响?几个空间明确的模拟模型针对特定情况探讨了这个问题,并得出了定性的见解(如灭绝阈值),但没有定量关系。我们使用一个时间离散的分析模型,得出了入侵阈值的一般定量关系,即种群扩散所需适宜栖息地的最小百分比。我们研究了在相关空间尺度上,这个阈值如何取决于扩散能力和破碎化水平之间的关系。在没有阿利效应时,入侵阈值随破碎化水平增加,但在存在阿利效应时,它随破碎化而降低。我们通过平均技术得出了异质景观中种群近似扩散速率的简单公式。与空间明确模拟的比较表明,近似值与真实值之间具有极好的一致性。我们将结果应用于树木的扩散,并对入侵物种的控制提出了一些启示。