Garcia-Manyes Sergi, Dougan Lorna, Badilla Carmen L, Brujic Jasna, Fernández Julio M
Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10534-9. doi: 10.1073/pnas.0901213106. Epub 2009 Jun 16.
Statistical theories of protein folding have long predicted plausible mechanisms for reducing the vast conformational space through distinct ensembles of structures. However, these predictions have remained untested by bulk techniques, because the conformational diversity of folding molecules has been experimentally unapproachable. Owing to recent advances in single molecule force-clamp spectroscopy, we are now able to probe the structure and dynamics of the small protein ubiquitin by measuring its length and mechanical stability during each stage of folding. Here, we discover that upon hydrophobic collapse, the protein rapidly selects a subset of minimum energy structures that are mechanically weak and essential precursors of the native fold. From this much reduced ensemble, the native state is acquired through a barrier-limited transition. Our results support the validity of statistical mechanics models in describing the folding of a small protein on biological timescales.
长期以来,蛋白质折叠的统计理论一直预测,通过不同的结构集合来减少巨大的构象空间存在合理的机制。然而,这些预测尚未通过整体技术得到验证,因为折叠分子的构象多样性在实验上难以实现。由于单分子力钳光谱技术的最新进展,我们现在能够通过测量小蛋白泛素在折叠各阶段的长度和机械稳定性,来探测其结构和动力学。在这里,我们发现,在疏水塌缩时,该蛋白质会迅速选择一组能量最低的结构,这些结构在机械上较弱,是天然折叠的必要前体。从这个大大减少的集合中,通过势垒限制的转变获得天然状态。我们的结果支持统计力学模型在描述生物时间尺度上小蛋白折叠方面的有效性。