Srivastava K, Gupta R, Chaves J M, Srivastava O P
Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
Biochemistry. 2009 Aug 4;48(30):7179-89. doi: 10.1021/bi900313c.
The purpose of the study was to determine the effects of truncation of various regions of betaB1-crystallin on its structural properties and stability of heterooligomers formed by wild-type (WT) betaB1 or its deletion mutants with WT betaA3-crystallin. For these analyses, seven deletion mutants of betaB1-crystallin were generated with the following sequential deletions of either N-terminal arm [betaB1(59-252)], N-terminal arm + motif I [betaB1(99-252)], N-terminal arm + motif I + motif II [betaB1(144-252)], N-terminal arm + motif I + motif II + connecting peptide [betaB1(149-252)], C-terminal extension [betaB1(1-234)], C-terminal extension plus motif IV [betaB1(1-190)], or C-terminal extension + motif III + motif IV [betaB1(1-148)]. The betaB1-crystallin became water insoluble on the deletion of C-terminal extension and subsequent deletions of the C-terminal domain (C-terminal extension plus motifs III and IV) while it remained partially soluble on the deletion of the N-terminal domain (N-terminal arm plus motifs I and II). However, circular dichroism spectral analysis showed that the deletion of the N-terminal domain but not the C-terminal domain exhibited relatively greater structural changes in the crystallin. The deletion of the C-terminal domain resulted in a greater exposure and disturbance in the microenvironment of Trp-100, Trp-123, and Trp-126 (localized in the motif II), suggesting a relatively greater role of the C-terminal domain than the N-terminal domain in the structural stability of the crystallin. The deletion of the N-terminal extension in betaB1 resulted in maximum exposure of hydrophobic patches and compact structure and in a maximum loss of subunit exchange with WT betaA3-crystallin compared to deletion of either the C-terminal extension, the N-terminal domain, or the C-terminal domain. The thermal stability results of the heterooligomer of betaB1- plus betaA3-crystallins suggested that oligomers lose their stability on deletion of the C-terminal domain. Together, the results suggested that the N-terminal arm of betaB1-crystallin plays a major role in interaction with betaA3-crystallin during heterooligomer formation, and the solubility of betaB1-crystallin per se and that of the heterooligomer with betaA3-crystallin are dependent on the intact C-terminal domain of betaB1-crystallin.
本研究的目的是确定βB1-晶体蛋白不同区域的截短对其结构特性以及由野生型(WT)βB1或其缺失突变体与WTβA3-晶体蛋白形成的异源寡聚体稳定性的影响。为了进行这些分析,构建了七个βB1-晶体蛋白的缺失突变体,分别对N端臂[βB1(59 - 252)]、N端臂+基序I[βB1(99 - 252)]、N端臂+基序I+基序II[βB1(144 - 252)]、N端臂+基序I+基序II+连接肽[βB1(149 - 252)]、C端延伸区[βB1(1 - 234)]、C端延伸区+基序IV[βB1(1 - 190)]或C端延伸区+基序III+基序IV[βB1(1 - 148)]进行了如下顺序缺失。βB1-晶体蛋白在缺失C端延伸区以及随后缺失C端结构域(C端延伸区+基序III和IV)时变得不溶于水,而在缺失N端结构域(N端臂+基序I和II)时仍部分可溶。然而,圆二色光谱分析表明,晶体蛋白中N端结构域的缺失而非C端结构域的缺失表现出相对较大的结构变化。C端结构域的缺失导致位于基序II中的Trp-100、Trp-123和Trp-126的微环境暴露增加且受到干扰,这表明C端结构域在晶体蛋白结构稳定性中的作用相对大于N端结构域。与缺失C端延伸区、N端结构域或C端结构域相比,βB1中N端延伸区的缺失导致疏水斑块最大程度暴露和结构紧凑,并且与WTβA3-晶体蛋白的亚基交换损失最大。βB1+βA3-晶体蛋白异源寡聚体的热稳定性结果表明,寡聚体在缺失C端结构域时失去稳定性。总之,结果表明βB1-晶体蛋白的N端臂在异源寡聚体形成过程中与βA3-晶体蛋白的相互作用中起主要作用,并且βB1-晶体蛋白本身以及与βA3-晶体蛋白形成的异源寡聚体的溶解性取决于βB1-晶体蛋白完整的C端结构域。