Martelli Fabrizio, Sassaroli Angelo, Pifferi Antonio, Torricelli Alessandro, Spinelli Lorenzo, Zaccanti Giovanni
Dipartimento di Fisica dell'Università degli Studi di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino, Firenze, Italy.
Opt Express. 2007 Dec 24;15(26):18168-75. doi: 10.1364/oe.15.018168.
The Green's function of the time dependent radiative transfer equation for the semi-infinite medium is derived for the first time by a heuristic approach based on the extrapolated boundary condition and on an almost exact solution for the infinite medium. Monte Carlo simulations performed both in the simple case of isotropic scattering and of an isotropic point-like source, and in the more realistic case of anisotropic scattering and pencil beam source, are used to validate the heuristic Green's function. Except for the very early times, the proposed solution has an excellent accuracy (> 98 % for the isotropic case, and > 97 % for the anisotropic case) significantly better than the diffusion equation. The use of this solution could be extremely useful in the biomedical optics field where it can be directly employed in conditions where the use of the diffusion equation is limited, e.g. small volume samples, high absorption and/or low scattering media, short source-receiver distances and early times. Also it represents a first step to derive tools for other geometries (e.g. slab and slab with inhomogeneities inside) of practical interest for noninvasive spectroscopy and diffuse optical imaging. Moreover the proposed solution can be useful to several research fields where the study of a transport process is fundamental.
基于外推边界条件和无限介质的近似精确解,首次通过启发式方法推导了半无限介质中含时辐射传输方程的格林函数。在各向同性散射和各向同性点状源的简单情况下,以及在各向异性散射和笔形束源的更实际情况下进行的蒙特卡罗模拟,用于验证启发式格林函数。除了极早期外,所提出的解具有极高的精度(各向同性情况下>98%,各向异性情况下>97%),明显优于扩散方程。在生物医学光学领域使用该解可能极其有用,在扩散方程使用受限的条件下,例如小体积样本、高吸收和/或低散射介质、短源-接收器距离和早期时刻,它可直接应用。它也是为其他具有实际意义的几何形状(例如内部有不均匀性的平板)推导工具的第一步,这些几何形状对无创光谱学和漫射光学成像很重要。此外,所提出的解对几个以传输过程研究为基础的研究领域可能有用。