Suppr超能文献

异菌脲1051在模块化河口中型生态系统中的归宿与迁移

Fate and transport of Irgarol 1051 in a modular estuarine mesocosm.

作者信息

Sapozhnikova Yelena, Pennington Paul, Wirth Edward, Fulton Michael

机构信息

JHT Inc., (Contractor to NOAA), 331 Fort Johnson Rd., Charleston, SC 29412, USA.

出版信息

J Environ Monit. 2009 Apr;11(4):808-14. doi: 10.1039/b818273f. Epub 2009 Feb 6.

Abstract

Fate and transport of Irgarol 1051 were assessed using a modular estuarine mesocosm containing natural seawater, saltmarsh sediments, marsh grass, shrimp, clams, snails, and naturally derived planktonic and benthic microorganisms. The mesocosms were enclosed in a greenhouse under near ambient conditions, and included a saltwater sump and a simulated tidal flux. The exposure was comprised of four replicate treatments of 0, 100, 1,000 and 10,000 ng/L Irgarol. Solid-phase extraction (SPE) was used to extract Irgarol and its major metabolite M1 (aka GS26575) from water samples. Sediment samples were extracted using Accelerated Solvent Extraction (ASE) with 100% dichloromethane. Irgarol and M1 were separated and quantified utilizing Liquid Chromatography Tandem Mass Spectrometry (LC-MS-MS) with ElectroSpray Ionization in Multiple Reaction Monitoring mode. Aqueous concentrations of Irgarol declined rapidly (average 93% loss) over the course of the 35 day experiment while Irgarol was accumulated in the sediments (average mass balance of 75 +/- 5%). Loss of aqueous Irgarol occurred in two distinct phases, a relatively rapid phase up to 96 hours post-dose, and a slower phase following 96 hours. The rate constants of the initial rapid degradation phase (k(1)) for treatments 100 and 1,000 ng/L Irgarol were 2-3 times higher than the rate constants of the subsequent slow degradation phase (k(2)) for these treatments. The average half-life of Irgarol in water was 7 +/- 3 days. The aqueous concentration of Irgarol's metabolite, M1 increased over the course of the experiment. By 35 days post-dose, M1 concentrations in water averaged about 3% of the parent compound. M1 also accumulated in mesocosm sediments (average 16.7 +/- 2.5% of total Irgarol dose). Mass balance calculations showed that by 35 days, Irgarol and M1 amounts in mesocosm water and sediments were close to 100% of the initial Irgarol dose. Average partition coefficient normalized for organic carbon (log K(oc)) calculated for Irgarol was 3.2 +/- 0.1 for 35 days post-dose. Accumulation of Irgarol and M1 in mesocosm sediments may warrant further study to assess toxicity for benthic communities.

摘要

使用一个模块化河口围隔生态系统评估了烯啶虫胺1051的归宿和迁移,该围隔生态系统包含天然海水、盐沼沉积物、沼泽草、虾、蛤、蜗牛以及天然来源的浮游和底栖微生物。围隔生态系统封闭在温室中,处于接近自然的条件下,包括一个盐水贮槽和模拟潮汐通量。暴露处理包括0、100、1000和10000 ng/L烯啶虫胺的四个重复处理组。采用固相萃取(SPE)从水样中提取烯啶虫胺及其主要代谢物M1(即GS26575)。沉积物样品采用100%二氯甲烷加速溶剂萃取(ASE)进行提取。利用液相色谱串联质谱(LC-MS-MS)在多反应监测模式下通过电喷雾电离对烯啶虫胺和M1进行分离和定量。在35天的实验过程中,烯啶虫胺的水体浓度迅速下降(平均损失93%),而烯啶虫胺在沉积物中积累(平均质量平衡为75±5%)。水体中烯啶虫胺的损失分为两个不同阶段:给药后96小时内相对较快的阶段和96小时后的较慢阶段。对于100和1000 ng/L烯啶虫胺处理组,初始快速降解阶段(k(1))的速率常数比这些处理组后续缓慢降解阶段(k(2))的速率常数高2 - 3倍。烯啶虫胺在水中的平均半衰期为7±3天。烯啶虫胺代谢物M1的水体浓度在实验过程中有所增加。给药后35天,水中M1浓度平均约为母体化合物的3%。M1也在围隔生态系统沉积物中积累(平均占烯啶虫胺总剂量的16.7±2.5%)。质量平衡计算表明,到35天时围隔生态系统水体和沉积物中烯啶虫胺和M1的量接近初始烯啶虫胺剂量的100%。给药后35天计算得出烯啶虫胺的平均有机碳归一化分配系数(log K(oc))为3.2±0.1。烯啶虫胺和M1在围隔生态系统沉积物中的积累可能需要进一步研究以评估对底栖生物群落的毒性。

相似文献

1
Fate and transport of Irgarol 1051 in a modular estuarine mesocosm.
J Environ Monit. 2009 Apr;11(4):808-14. doi: 10.1039/b818273f. Epub 2009 Feb 6.
2
Occurrence and persistence of antifouling biocide Irgarol 1051 and its main metabolite in the coastal waters of Southern England.
Sci Total Environ. 2008 Nov 15;406(1-2):239-46. doi: 10.1016/j.scitotenv.2008.07.049. Epub 2008 Sep 11.
3
Antifouling biocides in water and sediments from California marinas.
Mar Pollut Bull. 2013 Apr 15;69(1-2):189-94. doi: 10.1016/j.marpolbul.2013.01.039. Epub 2013 Feb 28.
4
Distribution of antifouling biocides in California marinas.
J Environ Monit. 2008 Sep;10(9):1069-75. doi: 10.1039/b806934d. Epub 2008 Jul 30.
5
Determination of Irgarol-1051 and its related s-triazine species in coastal sediments and mussel tissues by HPLC-ESI-MS/MS.
Mar Pollut Bull. 2009 Oct;58(10):1462-71. doi: 10.1016/j.marpolbul.2009.06.011. Epub 2009 Jul 19.
6
Applicability of microwave-assisted extraction combined with LC-MS/MS in the evaluation of booster biocide levels in harbour sediments.
Chemosphere. 2011 Jan;82(1):96-102. doi: 10.1016/j.chemosphere.2010.09.064. Epub 2010 Oct 13.
7
Lethal and sublethal toxicity of the antifoulant compound Irgarol 1051 to the mud snail Ilyanassa obsoleta.
Arch Environ Contam Toxicol. 2009 Jan;56(1):85-95. doi: 10.1007/s00244-008-9166-x. Epub 2008 May 6.
8
Ecological risk of Irgarol 1051 and its major metabolite in coastal California marinas and reference areas.
Mar Pollut Bull. 2009 May;58(5):702-10. doi: 10.1016/j.marpolbul.2008.12.019.
9
Occurrence and transport of Irgarol 1051 and its major metabolite in coastal waters from South Florida.
Mar Pollut Bull. 2004 Dec;49(11-12):1072-83. doi: 10.1016/j.marpolbul.2004.08.003.
10
Monitoring of antifouling booster biocides in water and sediment from the port of Osaka, Japan.
Arch Environ Contam Toxicol. 2005 Apr;48(3):303-10. doi: 10.1007/s00244-004-0084-2. Epub 2005 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验