Mayilmurugan Ramasamy, Stoeckli-Evans Helen, Suresh Eringathodi, Palaniandavar Mallayan
School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, India.
Dalton Trans. 2009 Jul 14(26):5101-14. doi: 10.1039/b820771b. Epub 2009 May 15.
Three novel non-heme micro-oxo-bridged diiron(III) complexes [Fe2(micro-O)(L1)2] 2, where H2(L1) is N,N'-o-phenylenebis(salicylideneimine), [Fe2(micro-O)(L2)2].2H2O 4, where H2(L2) is N,N'-o-phenylenebis(3,5-di-tert-butylsalicylideneimine), and [Fe2(micro-O)(L3)2] 6, where H2(L3)=1,4-bis(2-hydroxybenzyl)-1,4-diazepane, have been isolated and studied as catalysts for the selective oxidative transformation of alkanes into alcohols using m-choloroperbenzoic acid (m-CPBA) as co-oxidant. The mononuclear iron(III) complexes [Fe(L1)Cl] 1 and [Fe(L4)Cl] 7, where H2(L4)=1,4-bis(2-hydroxy-3,5-di-tert-butylbenzyl)-1,4-diazepane, have been also isolated and those corresponding to the dimeric complexes 4 and 6 have been generated in CH3CN solution and characterized as [Fe(L2)Cl] 3 and [Fe(L3)Cl] 5 by using ESI-MS, absorption and EPR spectral and electrochemical methods. The molecular structures of 4 and 6 have been successfully determined by single crystal X-ray diffraction. Both 4 and 6 possess the Fe-O-Fe structural motif with each iron atom possessing a distorted square pyramidal coordination geometry. The steric constraint at the iron(III) center in 6 is higher than that in 4 as understood from the values of the trigonality structural index (tau: 4, 0.226, 0.273; 6, 0.449) due to the higher steric congestion built by the diazapane back bone. The micro-oxo-to-Fe(III) LMCT band for 4 is observed around 622 nm (epsilon, 1830 M(-1) cm(-1)) in methanol but is not observed in CH3CN solution and it is blue-shifted to around 485 nm (epsilon, 5760 M(-1) cm(-1)) in 6, possibly due to the higher Fe-O-Fe bond angle in the latter (4, 177.4; 6, 180 degrees). The Fe(III)/Fe(II) redox potentials of the dinuclear complexes (E1/2: 2, -0.606; 4, -0.329; 6, -0.889 V) are more negative than those for their corresponding mononuclear complexes (E1/2: 1, -0.300 V; 3, -0.269; 5, -0.289 V) due to O2- coordination. Interestingly, upon addition of peroxides (H2O2, t-BuOOH) and the peracid m-CPBA, the intensity of the phenolate-to-Fe(III) LMCT band for 2 and 6 decreases but does not exhibit any appreciable change for 4. In the presence of m-CPBA cyclohexane is selectively (A/K, 12.2) oxidized by the dimeric complex to cyclohexanol (A, CyOH) and a small amount of the further oxidized product cyclohexanone (K, CyO). However, interestingly, the corresponding monomeric complex affords enhanced yields of both CyOH and CyO but with a lower selectivity (A/K=1.7) and also 1-chlorocyclohexane via oxidative ligand transfer (OLT). The oxidation of adamantane by 4 affords exclusively 1-adamantanol (50.5%) and 2-adamantanol (9.5%) with enhanced yields over 12 h. In contrast, 3 provides 1-adamantanol (32.4%) and 2-adamantanol (14.8%) and adamantanone (14.6%) in addition to 1-chloroadamantane (14.1%) as the OLT product. The secondary C-H bond of ethylbenzene is randomly activated by both 3 and 4 to give 1-phenylethanol and acetophenone. Also, oxidation of cumene with tertiary C-H bonds to give 2-phenyl-2-propanol and the further oxidized product acetophenone is illustrated by invoking the iron-phenoxyl radical species as invoked for metalloporphyrin-catalyzed systems. The strong chemoselectivity in C-H bond activation of alkanes by 4has been illustrated by invoking the involvement of a high-valent iron-oxo intermediate generated by using m-CPBA rather than the conventional oxidants H2O2 and t-BuOOH. In contrast to 4, the complexes 2 and 6 fail to effect the oxidation of hydrocarbons in the presence of H2O2, t-BuOOH and m-CPBA as the co-oxidant.
已分离出三种新型非血红素微氧桥联二铁(III)配合物[Fe₂(μ-O)(L₁)₂]₂,其中H₂(L₁)为N,N'-邻亚苯基双(水杨醛亚胺);[Fe₂(μ-O)(L₂)₂]·2H₂O 4,其中H₂(L₂)为N,N'-邻亚苯基双(3,5-二叔丁基水杨醛亚胺);以及[Fe₂(μ-O)(L₃)₂] 6,其中H₂(L₃)=1,4-双(2-羟基苄基)-1,4-二氮杂环庚烷,并将其作为使用间氯过苯甲酸(m-CPBA)作为共氧化剂将烷烃选择性氧化转化为醇的催化剂进行了研究。还分离出了单核铁(III)配合物[Fe(L₁)Cl] 1和[Fe(L₄)Cl] 7,其中H₂(L₄)=1,4-双(2-羟基-3,5-二叔丁基苄基)-1,4-二氮杂环庚烷,并且与二聚体配合物4和6相对应的那些在乙腈溶液中生成,并通过电喷雾电离质谱(ESI-MS)、吸收光谱、电子顺磁共振(EPR)光谱和电化学方法表征为[Fe(L₂)Cl] 3和[Fe(L₃)Cl] 5。已通过单晶X射线衍射成功测定了4和6的分子结构。4和6都具有Fe-O-Fe结构单元,每个铁原子具有扭曲的四方锥配位几何结构。从三角结构指数(τ:4,0.226,0.273;6,0.449)的值可以看出,6中铁(III)中心的空间位阻高于4,这是由于二氮杂环庚烷主链产生的空间拥挤程度更高。4的微氧到Fe(III)配体到金属中心的电荷转移(LMCT)带在甲醇中约622 nm处观察到(ε,1830 M⁻¹ cm⁻¹),但在乙腈溶液中未观察到,并且在6中蓝移至约485 nm(ε,5760 M⁻¹ cm⁻¹),这可能是由于后者中更高的Fe-O-Fe键角(4,177.4°;6,180°)。双核配合物的Fe(III)/Fe(II)氧化还原电位(E₁/₂:2,-0.606;4,-0.329;6,-0.889 V)比其相应单核配合物的更负(E₁/₂:1,-0.300 V;3,-0.269;5,-0.289 V),这是由于O₂⁻配位。有趣的是,加入过氧化物(H₂O₂,叔丁基过氧化氢)和过酸m-CPBA后,2和6的酚盐到Fe(III)的LMCT带强度降低,但4没有表现出任何明显变化。在m-CPBA存在下,环己烷被二聚体配合物选择性地(A/K,12.2)氧化为环己醇(A,CyOH)和少量进一步氧化的产物环己酮(K,CyO)。然而,有趣的是,相应的单体配合物提供了更高产率的CyOH和CyO,但选择性较低(A/K = 1.7),并且还通过氧化配体转移(OLT)生成了1-氯环己烷。4对金刚烷的氧化在12小时内仅得到1-金刚烷醇(50.5%)和2-金刚烷醇(9.5%),产率提高。相比之下,3除了作为OLT产物的1-氯金刚烷(14.1%)外,还提供1-金刚烷醇(32.4%)、2-金刚烷醇(14.8%)和金刚烷酮(14.6%)。乙苯的仲C-H键被3和4随机活化,生成1-苯乙醇和苯乙酮。此外,通过引入与金属卟啉催化体系相同的铁-苯氧基自由基物种,说明了用具有叔C-H键的异丙苯氧化生成2-苯基-2-丙醇和进一步氧化的产物苯乙酮。通过引入使用m-CPBA而不是传统氧化剂H₂O₂和叔丁基过氧化氢生成高价铁-氧中间体,说明了4对烷烃C-H键活化的强化学选择性。与4相反,配合物2和6在H₂O₂、叔丁基过氧化氢和m-CPBA作为共氧化剂存在下不能实现烃的氧化。