Zare Richard N, Kuramoto Douglas S, Haase Christa, Tan Sze M, Crosson Eric R, Saad Nabil M R
Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):10928-32. doi: 10.1073/pnas.0904230106. Epub 2009 Jun 29.
A continuous-flow cavity ring-down spectroscopy (CRDS) system integrating a chromatographic separation technique, a catalytic combustor, and an isotopic (13)C/(12)C optical analyzer is described for the isotopic analysis of a mixture of organic compounds. A demonstration of its potential is made for the geochemically important class of short-chain hydrocarbons. The system proved to be linear over a 3-fold injection volume dynamic range with an average precision of 0.95 per thousand and 0.67 per thousand for ethane and propane, respectively. The calibrated accuracy for methane, ethane, and propane is within 3 per thousand of the values determined using isotope ratio mass spectrometry (IRMS), which is the current method of choice for compound-specific isotope analysis. With anticipated improvements, the low-cost, portable, and easy-to-use CRDS-based instrumental setup is poised to evolve into a credible challenge to the high-cost and complex IRMS-based technique.
本文描述了一种连续流动腔衰荡光谱(CRDS)系统,该系统集成了色谱分离技术、催化燃烧器和同位素(13C/12C)光学分析仪,用于有机化合物混合物的同位素分析。文中展示了该系统在地球化学上重要的短链烃类分析中的潜力。该系统在3倍进样体积动态范围内呈线性,乙烷和丙烷的平均精密度分别为千分之0.95和千分之0.67。甲烷、乙烷和丙烷的校准准确度在使用同位素比率质谱法(IRMS)测定值的千分之3以内,IRMS是目前化合物特定同位素分析的首选方法。随着预期的改进,这种基于CRDS的低成本、便携式且易于使用的仪器装置有望对基于IRMS的高成本且复杂的技术构成可信挑战。