Carter Sidney D, Vigasová Dana, Chen Jiang, Chovanec Miroslav, Aström Stefan U
Developmental Biology/Wenner-Gren Institute, Stockholm University, Svante Arrhenius v.16-18, SE-106 91 Stockholm, Sweden.
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):12037-42. doi: 10.1073/pnas.0903869106. Epub 2009 Jul 1.
Double-strand breaks (DSBs) represent the most severe DNA lesion a cell can suffer, as they pose the risk of inducing loss of genomic integrity and promote oncogenesis in mammals. Two pathways repair DSBs, nonhomologous end joining (NHEJ) and homologous recombination (HR). With respect to mechanism and genetic requirements, characterization of these pathways has revealed a large degree of functional separation between the two. Nej1 is a cell-type specific regulator essential to NHEJ in Saccharomyces cerevisiae. Srs2 is a DNA helicase with multiple roles in HR. In this study, we show that Nej1 physically interacts with Srs2. Furthermore, mutational analysis of Nej1 suggests that the interaction was strengthened by Dun1-dependent phosphorylation of Nej1 serines 297/298. Srs2 was previously shown to be recruited to replication forks, where it promotes translesion DNA synthesis. We demonstrate that Srs2 was also efficiently recruited to DSBs generated by the HO endonuclease. Additionally, efficient Srs2 recruitment to this DSB was dependent on Nej1, but independent of mechanisms facilitating Srs2 recruitment to replication forks. Functionally, both Nej1 and Srs2 were required for efficient repair of DSBs with 15-bp overhangs, a repair event reminiscent of a specific type of HR called single-strand annealing (SSA). Moreover, absence of Rad51 suppressed the SSA-defect in srs2 and nej1 strains. We suggest a model in which Nej1 recruits Srs2 to DSBs to promote NHEJ/SSA-like repair by dismantling inappropriately formed Rad51 nucleoprotein filaments. This unexpected link between NHEJ and HR components may represent cross-talk between DSB repair pathways to ensure efficient repair.
双链断裂(DSB)是细胞可能遭受的最严重的DNA损伤,因为它们会导致基因组完整性丧失,并在哺乳动物中促进肿瘤发生。有两条途径可修复DSB,即非同源末端连接(NHEJ)和同源重组(HR)。就机制和遗传需求而言,对这些途径的表征揭示了两者之间在很大程度上的功能分离。Nej1是酿酒酵母中NHEJ所必需的细胞类型特异性调节因子。Srs2是一种在HR中具有多种作用的DNA解旋酶。在本研究中,我们表明Nej1与Srs2存在物理相互作用。此外,对Nej1的突变分析表明,Nej1丝氨酸297/298的Dun1依赖性磷酸化增强了这种相互作用。先前已表明Srs2被招募到复制叉,在那里它促进跨损伤DNA合成。我们证明Srs2也能有效地被招募到由HO核酸内切酶产生的DSB处。此外,Srs2有效招募到该DSB依赖于Nej1,但独立于促进Srs2招募到复制叉的机制。在功能上,Nej1和Srs2都是有效修复具有15个碱基对突出端的DSB所必需的,这种修复事件让人联想到一种称为单链退火(SSA)的特定类型的HR。此外,Rad51的缺失抑制了srs2和nej1菌株中的SSA缺陷。我们提出了一个模型,其中Nej1将Srs2招募到DSB处,通过拆解不适当形成的Rad51核蛋白丝来促进NHEJ/SSA样修复。NHEJ和HR组件之间这种意想不到的联系可能代表了DSB修复途径之间的相互作用,以确保有效修复。