Suppr超能文献

用于执行简单语音序列的神经表示和机制。

Neural representations and mechanisms for the performance of simple speech sequences.

机构信息

Cold Spring Harbor Laboratory, Department of Health and Sciences, Boston University, Sargent College of Health & Rehabilitation Sciences, Boston, MA 02215, USA.

出版信息

J Cogn Neurosci. 2010 Jul;22(7):1504-29. doi: 10.1162/jocn.2009.21306.

Abstract

Speakers plan the phonological content of their utterances before their release as speech motor acts. Using a finite alphabet of learned phonemes and a relatively small number of syllable structures, speakers are able to rapidly plan and produce arbitrary syllable sequences that fall within the rules of their language. The class of computational models of sequence planning and performance termed competitive queuing models have followed K. S. Lashley [The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior (pp. 112-136). New York: Wiley, 1951] in assuming that inherently parallel neural representations underlie serial action, and this idea is increasingly supported by experimental evidence. In this article, we developed a neural model that extends the existing DIVA model of speech production in two complementary ways. The new model includes paired structure and content subsystems [cf. MacNeilage, P. F. The frame/content theory of evolution of speech production. Behavioral and Brain Sciences, 21, 499-511, 1998 ] that provide parallel representations of a forthcoming speech plan as well as mechanisms for interfacing these phonological planning representations with learned sensorimotor programs to enable stepping through multisyllabic speech plans. On the basis of previous reports, the model's components are hypothesized to be localized to specific cortical and subcortical structures, including the left inferior frontal sulcus, the medial premotor cortex, the basal ganglia, and the thalamus. The new model, called gradient order DIVA, thus fills a void in current speech research by providing formal mechanistic hypotheses about both phonological and phonetic processes that are grounded by neuroanatomy and physiology. This framework also generates predictions that can be tested in future neuroimaging and clinical case studies.

摘要

说话者在将话语作为言语运动行为发出之前,会计划话语的语音内容。说话者使用已学的音位有限字母表和相对较少的音节结构,能够快速计划和生成属于其语言规则内的任意音节序列。一类称为竞争排队模型的序列规划和执行的计算模型遵循 K.S.拉什利(K. S. Lashley)的观点,即序列动作的基础是内在并行的神经表示,越来越多的实验证据支持这一观点。在本文中,我们开发了一种神经模型,通过两种互补的方式扩展了现有的语音产生 DIVA 模型。新模型包括配对的结构和内容子系统[参见 MacNeilage, P. F. Speech production 的框架/内容理论的进化。行为与脑科学,21, 499-511, 1998],为即将到来的语音计划提供并行表示,以及将这些语音计划表示与已学的感觉运动程序接口的机制,从而能够逐步完成多音节语音计划。基于之前的报告,模型的组件被假设定位于特定的皮质和皮质下结构,包括左额下回、内侧运动前皮质、基底神经节和丘脑。新模型称为梯度顺序 DIVA,通过提供基于神经解剖学和生理学的语音和语音过程的正式机制假设,填补了当前语音研究的空白。该框架还产生了可以在未来的神经影像学和临床病例研究中进行测试的预测。

相似文献

1
Neural representations and mechanisms for the performance of simple speech sequences.
J Cogn Neurosci. 2010 Jul;22(7):1504-29. doi: 10.1162/jocn.2009.21306.
2
An fMRI investigation of syllable sequence production.
Neuroimage. 2006 Aug 15;32(2):821-41. doi: 10.1016/j.neuroimage.2006.04.173. Epub 2006 May 26.
3
A neuroimaging study of premotor lateralization and cerebellar involvement in the production of phonemes and syllables.
J Speech Lang Hear Res. 2008 Oct;51(5):1183-202. doi: 10.1044/1092-4388(2008/07-0119). Epub 2008 Jul 29.
4
The contribution of mesiofrontal cortex to the preparation and execution of repetitive syllable productions: an fMRI study.
Neuroimage. 2010 Apr 15;50(3):1219-30. doi: 10.1016/j.neuroimage.2010.01.039. Epub 2010 Jan 18.
5
Computational perspectives on forebrain microcircuits implicated in reinforcement learning, action selection, and cognitive control.
Neural Netw. 2009 Jul-Aug;22(5-6):757-65. doi: 10.1016/j.neunet.2009.06.008. Epub 2009 Jun 30.
6
Subcortical functions in language: a working model.
Brain Lang. 1985 Jul;25(2):257-92. doi: 10.1016/0093-934x(85)90085-9.
7
Different roles of cytoarchitectonic BA 44 and BA 45 in phonological and semantic verbal fluency as revealed by dynamic causal modelling.
Neuroimage. 2009 Nov 15;48(3):616-24. doi: 10.1016/j.neuroimage.2009.06.044. Epub 2009 Jun 25.
9
Modelling speech motor programming and apraxia of speech in the DIVA/GODIVA neurocomputational framework.
Aphasiology. 2021;35(4):424-441. doi: 10.1080/02687038.2020.1765307. Epub 2020 May 18.

引用本文的文献

1
Speech sequencing in the human precentral gyrus.
Nat Hum Behav. 2025 Jul 16. doi: 10.1038/s41562-025-02250-1.
3
Role for Left Dorsomedial Prefrontal Cortex in Self-Generated, but not Externally Cued, Language Production.
Neurobiol Lang (Camb). 2025 Jun 12;6. doi: 10.1162/nol_a_00166. eCollection 2025.
5
Right-Hemispheric White Matter Organization Is Associated With Speech Timing in Autistic Children.
J Speech Lang Hear Res. 2025 Jun 5;68(6):2685-2699. doi: 10.1044/2025_JSLHR-24-00548. Epub 2025 May 19.
6
Planning competing values of a single phonological feature vs. planning values for multiple features.
J Mem Lang. 2025 Aug;143. doi: 10.1016/j.jml.2025.104642. Epub 2025 May 5.
8
Brain Dynamics of Speech Modes Encoding: Loud and Whispered Speech Versus Standard Speech.
Brain Topogr. 2025 Feb 15;38(2):31. doi: 10.1007/s10548-025-01108-z.
9
Supplementary motor area in speech initiation: A large-scale intracranial EEG evaluation of stereotyped word articulation.
iScience. 2024 Dec 4;28(1):111531. doi: 10.1016/j.isci.2024.111531. eCollection 2025 Jan 17.
10
Functional anatomy and topographical organization of the frontotemporal arcuate fasciculus.
Commun Biol. 2024 Dec 19;7(1):1655. doi: 10.1038/s42003-024-07274-3.

本文引用的文献

1
From phonemes to articulatory codes: an fMRI study of the role of Broca's area in speech production.
Cereb Cortex. 2009 Sep;19(9):2156-65. doi: 10.1093/cercor/bhn239. Epub 2009 Jan 29.
2
Cerebellar contributions to speech production and speech perception: psycholinguistic and neurobiological perspectives.
Trends Neurosci. 2008 Jun;31(6):265-72. doi: 10.1016/j.tins.2008.02.011. Epub 2008 May 9.
3
The neural basis of ataxic dysarthria.
Cerebellum. 2007;6(1):58-65. doi: 10.1080/14734220601145459.
4
Cortical interactions underlying the production of speech sounds.
J Commun Disord. 2006 Sep-Oct;39(5):350-65. doi: 10.1016/j.jcomdis.2006.06.013. Epub 2006 Aug 2.
5
Language control in the bilingual brain.
Science. 2006 Jun 9;312(5779):1537-40. doi: 10.1126/science.1127761.
6
An fMRI investigation of syllable sequence production.
Neuroimage. 2006 Aug 15;32(2):821-41. doi: 10.1016/j.neuroimage.2006.04.173. Epub 2006 May 26.
7
The role of the supplementary motor area (SMA) in word production.
Brain Res. 2006 Mar 3;1076(1):129-43. doi: 10.1016/j.brainres.2005.11.104. Epub 2006 Feb 9.
8
Neural modeling and imaging of the cortical interactions underlying syllable production.
Brain Lang. 2006 Mar;96(3):280-301. doi: 10.1016/j.bandl.2005.06.001. Epub 2005 Jul 22.
9
Imitating unfamiliar sequences of connected linear motions.
J Neurophysiol. 2005 Oct;94(4):2832-43. doi: 10.1152/jn.00366.2005. Epub 2005 Jul 13.
10
The role of dominant striatum in language: a study using intraoperative electrical stimulations.
J Neurol Neurosurg Psychiatry. 2005 Jul;76(7):940-6. doi: 10.1136/jnnp.2004.045948.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验