Suppr超能文献

谷氨酸转运体在小脑浦肯野细胞突触中的功能。

Functions of glutamate transporters in cerebellar Purkinje cell synapses.

机构信息

Department of Otolaryngology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.

出版信息

Acta Physiol (Oxf). 2009 Sep;197(1):1-12. doi: 10.1111/j.1748-1716.2009.02019.x. Epub 2009 Jul 6.

Abstract

Glutamate transporters play a critical role in the maintenance of low extracellular concentrations of glutamate, which prevents the overactivation of post-synaptic glutamate receptors. Four distinct glutamate transporters, GLAST/EAAT1, GLT-1/EAAT2, EAAC1/EAAT3 and EAAT4, are distributed in the molecular layer of the cerebellum, especially near glutamatergic synapses in Purkinje cells (PCs). This review summarizes the current knowledge about the differential roles of these transporters at excitatory synapses of PCs. Data come predominantly from electrophysiological experiments in mutant mice that are deficient in each of these transporter genes. GLAST expressed in Bergmann glia contributes to the clearing of the majority of glutamate that floods out of the synaptic cleft immediately after transmitter release from the climbing fibre (CF) and parallel fibre (PF) terminals. It is indispensable to maintain a one-to-one relationship in synaptic transmission at the CF synapses by preventing transcellular glutamate spillover. GLT-1 plays a similar but minor role in the uptake of glutamate as GLAST. Although the loss of neither GLAST nor GLT-1 affects cerebellar morphology, the deletion of both GLAST and GLT-1 genes causes the death of the mutant animal and hinders the folium formation of the cerebellum. EAAT4 removes the low concentrations of glutamate that escape from uptake by glial transporters, preventing the transmitter from spilling over into neighbouring synapses. It also regulates the activation of metabotropic glutamate receptor 1 (mGluR1) in perisynaptic regions at PF synapses, which in turn affects mGluR1-mediated events including slow EPSCs and long-term depression. No change in synaptic function is detected in mice that are deficient in EAAC1.

摘要

谷氨酸转运体在维持细胞外谷氨酸浓度低方面起着关键作用,防止了突触后谷氨酸受体的过度激活。四种不同的谷氨酸转运体,GLAST/EAAT1、GLT-1/EAAT2、EAAC1/EAAT3 和 EAAT4,分布在小脑的分子层,特别是在浦肯野细胞(PCs)的谷氨酸能突触附近。这篇综述总结了这些转运体在 PCs 兴奋性突触中不同作用的最新知识。这些数据主要来自于突变小鼠的电生理实验,这些小鼠在这些转运体基因中的每一个都有缺陷。在伯格曼胶质细胞中表达的 GLAST 有助于清除大部分谷氨酸,这些谷氨酸在从 climbing fibre (CF) 和 parallel fibre (PF) 末梢释放递质后立即从突触裂隙中溢出。通过防止细胞间谷氨酸溢出,它对于维持 CF 突触处的突触传递一一对应关系是不可或缺的。GLT-1 在摄取谷氨酸方面发挥着类似于 GLAST 的但较小的作用。尽管 GLAST 或 GLT-1 的缺失都不会影响小脑形态,但 GLAST 和 GLT-1 基因的缺失都会导致突变动物的死亡,并阻碍小脑叶片的形成。EAAT4 去除了从胶质转运体摄取中逃逸的低浓度谷氨酸,防止递质溢出到相邻的突触。它还调节 PF 突触中 perisynaptic 区域中代谢型谷氨酸受体 1 (mGluR1)的激活,这反过来又影响 mGluR1 介导的事件,包括慢 EPSC 和长时程抑制。在缺乏 EAAC1 的小鼠中,突触功能没有变化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验