Liu Yang, Paciorek Christopher J, Koutrakis Petros
Department of Environmental Health, Harvard University, School of Public Health, Boston, Massachusetts, USA.
Environ Health Perspect. 2009 Jun;117(6):886-92. doi: 10.1289/ehp.0800123. Epub 2009 Jan 28.
Studies of chronic health effects due to exposures to particulate matter with aerodynamic diameters <or= 2.5 microm (PM(2.5)) are often limited by sparse measurements. Satellite aerosol remote sensing data may be used to extend PM(2.5) ground networks to cover a much larger area.
In this study we examined the benefits of using aerosol optical depth (AOD) retrieved by the Geostationary Operational Environmental Satellite (GOES) in conjunction with land use and meteorologic information to estimate ground-level PM(2.5) concentrations.
We developed a two-stage generalized additive model (GAM) for U.S. Environmental Protection Agency PM(2.5) concentrations in a domain centered in Massachusetts. The AOD model represents conditions when AOD retrieval is successful; the non-AOD model represents conditions when AOD is missing in the domain.
The AOD model has a higher predicting power judged by adjusted R(2) (0.79) than does the non-AOD model (0.48). The predicted PM(2.5) concentrations by the AOD model are, on average, 0.8-0.9 microg/m(3) higher than the non-AOD model predictions, with a more smooth spatial distribution, higher concentrations in rural areas, and the highest concentrations in areas other than major urban centers. Although AOD is a highly significant predictor of PM(2.5), meteorologic parameters are major contributors to the better performance of the AOD model.
GOES aerosol/smoke product (GASP) AOD is able to summarize a set of weather and land use conditions that stratify PM(2.5) concentrations into two different spatial patterns. Even if land use regression models do not include AOD as a predictor variable, two separate models should be fitted to account for different PM(2.5) spatial patterns related to AOD availability.
对暴露于空气动力学直径小于或等于2.5微米的颗粒物(PM2.5)所导致的慢性健康影响的研究常常受到测量数据稀少的限制。卫星气溶胶遥感数据可用于扩展PM2.5地面监测网络,以覆盖更大的区域。
在本研究中,我们检验了结合土地利用和气象信息,使用地球同步环境业务卫星(GOES)反演的气溶胶光学厚度(AOD)来估算地面PM2.5浓度的益处。
我们针对以马萨诸塞州为中心的区域,开发了一个用于美国环境保护局PM2.5浓度的两阶段广义相加模型(GAM)。AOD模型代表AOD反演成功时的情况;非AOD模型代表该区域AOD缺失时的情况。
根据调整后的R2判断,AOD模型(0.79)比非AOD模型(0.48)具有更高的预测能力。AOD模型预测的PM2.5浓度平均比非AOD模型预测值高0.8 - 0.9微克/立方米,其空间分布更平滑,农村地区浓度更高,且主要城市中心以外地区浓度最高。尽管AOD是PM2.5的一个高度显著的预测因子,但气象参数是AOD模型性能更好的主要贡献因素。
GOES气溶胶/烟雾产品(GASP)AOD能够概括一组天气和土地利用条件,这些条件将PM2.5浓度分层为两种不同的空间模式。即使土地利用回归模型不将AOD作为预测变量,也应拟合两个单独的模型,以考虑与AOD可用性相关的不同PM2.5空间模式。