Suppr超能文献

完全信息的期望值:通过开展额外研究降低决策不确定性的一个实证例子。

Expected value of perfect information: an empirical example of reducing decision uncertainty by conducting additional research.

作者信息

Oostenbrink Jan B, Al Maiwenn J, Oppe Mark, Rutten-van Mölken Maureen P M H

机构信息

Institute for Medical Technology Assessment, Erasmus MC Rotterdam, Rotterdam, The Netherlands.

出版信息

Value Health. 2008 Dec;11(7):1070-80. doi: 10.1111/j.1524-4733.2008.00389.x.

Abstract

OBJECTIVE

Value of information (VOI) analysis informs decision-makers about the expected value of conducting more research to support a decision. This expected value of (partial) perfect information (EV(P)PI) can be estimated by simultaneously eliminating uncertainty on all (or some) parameters involved in model-based decision-making. This study aimed to calculate the EVPPI, before and after collecting additional information on the parameter of a probabilistic Markov model with the highest EVPPI.

METHODS

The model assessed the 5-year costs per quality-adjusted life year (QALY) of three bronchodilators in chronic obstructive pulmonary disease (COPD). It had identified tiotropium as the bronchodilator with the highest expected net benefit. Total EVPI was estimated plus the EVPPIs for four groups of parameters: 1) transition probabilities between COPD severity stages; 2) exacerbation probabilities; 3) utility weights; and 4) costs. Partial EVPI analyses were performed using one-level and two-level sampling algorithms.

RESULTS

Before additional research, the total EVPI was Euro 1985 per patient at a threshold value of Euro 20,000 per QALY. EVPPIs were Euro 1081 for utilities, Euro 724 for transition probabilities, and relatively small for exacerbation probabilities and costs. A large study was performed to obtain more precise EQ-5D utilities by COPD severity stages. After using posterior utilities, the EVPPI for utilities decreased to almost zero. The total EVPI for the updated model was reduced to Euro 1037. With an EVPPI of Euro 856, transition probabilities were now the single most important parameter contributing to the EVPI.

CONCLUSIONS

This VOI analysis clearly identified parameters for which additional research is most worthwhile. After conducting additional research on the most important parameter, i.e., the utilities, total EVPI was substantially reduced.

摘要

目的

信息价值(VOI)分析可让决策者了解开展更多研究以支持决策的预期价值。(部分)完美信息的预期价值(EV(P)PI)可通过同时消除基于模型的决策中涉及的所有(或某些)参数的不确定性来估计。本研究旨在计算在收集有关具有最高EVPI的概率马尔可夫模型参数的额外信息之前和之后的EVPPI。

方法

该模型评估了慢性阻塞性肺疾病(COPD)中三种支气管扩张剂每质量调整生命年(QALY)的5年成本。它已确定噻托溴铵是预期净效益最高的支气管扩张剂。估计了总EVPI以及四组参数的EVPPI:1)COPD严重程度阶段之间的转移概率;2)急性加重概率;3)效用权重;4)成本。使用一级和二级抽样算法进行部分EVPI分析。

结果

在进行额外研究之前,在每QALY阈值为20,000欧元时,总EVPI为每位患者1985欧元。效用的EVPPI为1081欧元,转移概率的EVPPI为724欧元,急性加重概率和成本的EVPPI相对较小。进行了一项大型研究以按COPD严重程度阶段获得更精确的EQ - 5D效用。使用后验效用后,效用的EVPPI降至几乎为零。更新模型的总EVPI降至1037欧元。转移概率现在是对EVPI贡献最大的单个最重要参数,其EVPPI为856欧元。

结论

该VOI分析明确确定了最值得进行额外研究 的参数。在对最重要的参数即效用进行额外研究后,总EVPI大幅降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验