Suppr超能文献

一种评估虚拟筛选的统计框架。

A statistical framework to evaluate virtual screening.

作者信息

Zhao Wei, Hevener Kirk E, White Stephen W, Lee Richard E, Boyett James M

机构信息

Department of Biostatistics, St Jude Children's Research Hospital, Memphis, TN, USA.

出版信息

BMC Bioinformatics. 2009 Jul 20;10:225. doi: 10.1186/1471-2105-10-225.

Abstract

BACKGROUND

Receiver operating characteristic (ROC) curve is widely used to evaluate virtual screening (VS) studies. However, the method fails to address the "early recognition" problem specific to VS. Although many other metrics, such as RIE, BEDROC, and pROC that emphasize "early recognition" have been proposed, there are no rigorous statistical guidelines for determining the thresholds and performing significance tests. Also no comparisons have been made between these metrics under a statistical framework to better understand their performances.

RESULTS

We have proposed a statistical framework to evaluate VS studies by which the threshold to determine whether a ranking method is better than random ranking can be derived by bootstrap simulations and 2 ranking methods can be compared by permutation test. We found that different metrics emphasize "early recognition" differently. BEDROC and RIE are 2 statistically equivalent metrics. Our newly proposed metric SLR is superior to pROC. Through extensive simulations, we observed a "seesaw effect" - overemphasizing early recognition reduces the statistical power of a metric to detect true early recognitions.

CONCLUSION

The statistical framework developed and tested by us is applicable to any other metric as well, even if their exact distribution is unknown. Under this framework, a threshold can be easily selected according to a pre-specified type I error rate and statistical comparisons between 2 ranking methods becomes possible. The theoretical null distribution of SLR metric is available so that the threshold of SLR can be exactly determined without resorting to bootstrap simulations, which makes it easy to use in practical virtual screening studies.

摘要

背景

受试者工作特征(ROC)曲线被广泛用于评估虚拟筛选(VS)研究。然而,该方法未能解决VS特有的“早期识别”问题。尽管已经提出了许多其他强调“早期识别”的指标,如RIE、BEDROC和pROC,但在确定阈值和进行显著性检验方面没有严格的统计指南。在统计框架下,这些指标之间也没有进行比较以更好地了解它们的性能。

结果

我们提出了一个评估VS研究的统计框架,通过该框架,可以通过自助模拟得出确定排序方法是否优于随机排序的阈值,并通过置换检验比较两种排序方法。我们发现不同的指标对“早期识别”的强调程度不同。BEDROC和RIE是两个统计等效的指标。我们新提出的指标SLR优于pROC。通过广泛的模拟,我们观察到一种“跷跷板效应”——过度强调早期识别会降低指标检测真正早期识别的统计能力。

结论

我们开发和测试的统计框架也适用于任何其他指标,即使其确切分布未知。在此框架下,可以根据预先指定的I型错误率轻松选择阈值,并且可以对两种排序方法进行统计比较。SLR指标的理论零分布是可用的,因此无需借助自助模拟即可精确确定SLR的阈值,这使得它在实际的虚拟筛选研究中易于使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6687/2722655/fce74f171c04/1471-2105-10-225-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验