Suppr超能文献

正常及衰竭心肌中基于肌联蛋白的机械信号传导

Titin-based mechanical signalling in normal and failing myocardium.

作者信息

Krüger Martina, Linke Wolfgang A

机构信息

Physiology and Biophysics Unit, University of Muenster, Schlossplatz 5, D-48149 Muenster, Germany.

出版信息

J Mol Cell Cardiol. 2009 Apr;46(4):490-8. doi: 10.1016/j.yjmcc.2009.01.004.

Abstract

Nodal points of mechanotransduction are found along the cardiac sarcomere, notably in the Z-disc/I-band and M-band regions. A major integrating component of these mechanosensitive complexes is the giant protein titin, which is anchored at the Z-disc, spans the I-band as an elastic spring and enters the A-band bound to myosin, then reaching all the way to the M-band. Passive-force generation and transmission of stress via the titin filaments may be central to the mechanosensory function of the myofibrillar signalosome complexes. This review discusses recent findings shedding light on mechanisms by which titin elasticity is regulated dynamically. Adjustment of titin stiffness occurs during heart development and disease through a shift in the expression ratio of the two main titin isoforms in cardiac sarcomeres, N2BA (compliant) and N2B (stiffer). Titin-isoform switching in favor of the stiffer N2B-titin can be triggered by thyroid hormone (T3)activating the phosphatidylinositol-3-kinase (PI3K)/AKT pathway. Conversely, low T3 promotes the compliant N2BA-titin. In addition, titin stiffness can be tuned acutely by protein kinase (PK)A-or PKG-mediated phosphorylation of a cardiac-specific I-band titin segment, the N2-B domain. Beta-adrenergic agonists, nitric oxide, or natriuretic peptides thus trigger a softening of the titin springs, thereby modulating diastolic function. Failing human hearts can have elevated passive stiffness in part because of a titin phosphorylation deficit, which may contribute to mechanical dysfunction. Altered titin phosphorylation could also affect protein-protein interactions in the mechanosensory complexes associated with the sarcomere. In this context, the review highlights novel links between titin and stress-signalling pathways in the cardiomyocyte.

摘要

机械转导的节点位于心肌肌节上,特别是在Z盘/I带和M带区域。这些机械敏感复合物的一个主要整合成分是巨大的肌联蛋白,它锚定在Z盘,作为一个弹性弹簧跨越I带,并进入与肌球蛋白结合的A带,然后一直延伸到M带。通过肌联蛋白丝产生的被动力和应力传递可能是肌原纤维信号体复合物机械感觉功能的核心。本综述讨论了最近的研究结果,这些结果揭示了肌联蛋白弹性被动态调节的机制。在心脏发育和疾病过程中,通过心肌肌节中两种主要肌联蛋白异构体N2BA(柔顺型)和N2B(更硬型)表达比例的变化,可实现肌联蛋白刚度的调节。甲状腺激素(T3)激活磷脂酰肌醇-3-激酶(PI3K)/AKT途径可触发肌联蛋白异构体转换,使其向更硬的N2B-肌联蛋白转变。相反,低T3水平会促进柔顺型的N2BA-肌联蛋白。此外,蛋白激酶(PK)A或PKG介导的心脏特异性I带肌联蛋白片段N2-B结构域的磷酸化可急性调节肌联蛋白的刚度。因此,β-肾上腺素能激动剂、一氧化氮或利钠肽可触发肌联蛋白弹簧的软化,从而调节舒张功能。衰竭的人类心脏被动刚度升高,部分原因可能是肌联蛋白磷酸化不足,这可能导致机械功能障碍。肌联蛋白磷酸化的改变也可能影响与肌节相关的机械感觉复合物中的蛋白质-蛋白质相互作用。在此背景下,本综述强调了肌联蛋白与心肌细胞应激信号通路之间的新联系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验