Smalter Aaron, Huan Jun, Lushington Gerald
Department of Electrical Engineering and Computer Science, University of Kansas, USA.
Comput Syst Bioinformatics Conf. 2008;7:327-38.
In this paper we introduce a novel graph classification algorithm and demonstrate its efficacy in drug design. In our method, we use graphs to model chemical structures and apply a wavelet analysis of graphs to create features capturing graph local topology. We design a novel graph kernel function to utilize the created feature to build predictive models for chemicals. We call the new graph kernel a graph wavelet-alignment kernel. We have evaluated the efficacy of the wavelet-alignment kernel using a set of chemical structure-activity prediction benchmarks. Our results indicate that the use of the kernel function yields performance profiles comparable to, and sometimes exceeding that of the existing state-of-the-art chemical classification approaches. In addition, our results also show that the use of wavelet functions significantly decreases the computational costs for graph kernel computation with more than 10 fold speed up.
在本文中,我们介绍了一种新颖的图分类算法,并展示了其在药物设计中的有效性。在我们的方法中,我们使用图来对化学结构进行建模,并应用图的小波分析来创建捕获图局部拓扑结构的特征。我们设计了一种新颖的图核函数,以利用所创建的特征来构建化学物质的预测模型。我们将新的图核称为图小波对齐核。我们使用一组化学结构 - 活性预测基准评估了小波对齐核的有效性。我们的结果表明,使用该核函数产生的性能概况与现有最先进的化学分类方法相当,有时甚至超过它们。此外,我们的结果还表明,使用小波函数显著降低了图核计算的计算成本,加速了10倍以上。