University of Michigan, Department of Epidemiology, Center for Social Epidemiology and Population Health, 109 South Observatory, 3 Floor SPH Tower, Ann Arbor, MI 48109-2029, USA.
J Epidemiol Community Health. 2010 Jan;64(1):16-21. doi: 10.1136/jech.2008.085985.
The field of epidemiology struggles both with enhancing causal inference in observational studies and providing useful information for policy makers and public health workers focusing on interventions. Population intervention models, analogous to population attributable fractions, estimate the causal impact of interventions in a population, and are one option for understanding the relative importance of various risk factors. With population intervention parameters, risk factors are effectively standardised, allowing one to compare their values directly and determine which potential intervention may have the greatest impact on the outcome.
The difference between total effects and population intervention parameters was examined using naïve, G-computation and inverse probability of treatment weighting approaches. The differences between these parameters and the intuitions they provide were explored using data from a 2003 cross-sectional study in rural Mexico.
The assumptions, specific analytic steps, limitations and interpretations of the total effects and population intervention parameters are discussed, and code is provided in Stata.
Population intervention parameters are a valuable and straightforward approach in epidemiological studies for making causal inference from the data while also supplying information that is relevant for researchers, public health practitioners and policy makers.
流行病学领域既要加强观察性研究中的因果推断,又要为关注干预措施的决策者和公共卫生工作者提供有用信息。人群干预模型类似于人群归因分数,可估计人群干预的因果影响,是了解各种风险因素相对重要性的一种选择。通过人群干预参数,可以对风险因素进行有效标准化,从而可以直接比较它们的值,并确定哪种潜在干预措施可能对结果产生最大影响。
使用天真、G 计算和治疗反概率加权方法研究总效应和人群干预参数之间的差异。使用 2003 年墨西哥农村一项横断面研究的数据,探讨了这些参数之间的差异及其提供的直观感受。
讨论了总效应和人群干预参数的假设、具体分析步骤、局限性和解释,并在 Stata 中提供了代码。
在流行病学研究中,人群干预参数是一种有价值且简单的方法,可以从数据中进行因果推断,同时为研究人员、公共卫生从业者和政策制定者提供相关信息。