Xia Qiangfei, Murphy Patrick F, Gao He, Chou Stephen Y
NanoStructure Laboratory, Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA.
Nanotechnology. 2009 Aug 26;20(34):345302. doi: 10.1088/0957-4484/20/34/345302. Epub 2009 Aug 4.
We use a novel technique, self-perfection by liquefaction (SPEL), to smooth the rough sidewalls of Si waveguides. An XeCl excimer laser with 308 nm wavelength and 20 ns pulse duration is used to selectively melt the surface layer of the waveguide. This molten layer flows under surface tension and this results in smooth sidewalls upon resolidification. Our experimental results show that this technique reduces the average sidewall roughness (1sigma) from 13 to 3 nm. Our calculations show that the waveguide transmission loss due to sidewall roughness in these waveguides would be reduced from 53 to 3 dB cm(-1), an improvement with light transmission five orders of magnitude greater. Due to a low viscosity of molten Si (below water), SPEL can be achieved on a Si surface within approximately 100 ns. This short time, together with SPEL's material selectivity, makes it possible to repair defective components on a chip without damaging surrounding components and materials, making SPEL a promising candidate for defect repair in integrated optics and nanophotonics.
我们使用一种新颖的技术——液化自完美(SPEL)来平滑硅波导的粗糙侧壁。使用波长为308 nm、脉冲持续时间为20 ns的XeCl准分子激光来选择性地熔化波导的表面层。该熔化层在表面张力作用下流动,重新凝固后会形成光滑的侧壁。我们的实验结果表明,该技术将平均侧壁粗糙度(1σ)从13 nm降低到了3 nm。我们的计算表明,这些波导中由于侧壁粗糙度导致的波导传输损耗将从53 dB cm⁻¹降低到3 dB cm⁻¹,光传输改善了五个数量级。由于熔化硅的低粘度(低于水),可以在大约100 ns内在硅表面实现SPEL。如此短的时间,再加上SPEL的材料选择性,可以在不损坏周围组件和材料的情况下修复芯片上的有缺陷组件,使SPEL成为集成光学和纳米光子学中缺陷修复的有前途的候选技术。