University of Michigan Transportation Research Institute, 2901 Baxter Road, Ann Arbor, MI 48109, USA.
J Biomech. 2009 Nov 13;42(15):2528-34. doi: 10.1016/j.jbiomech.2009.07.003. Epub 2009 Aug 7.
Motor-vehicle crashes are the leading cause of fetal deaths resulting from maternal trauma in the United States, and placental abruption is the most common cause of these deaths. To minimize this injury, new assessment tools, such as crash-test dummies and computational models of pregnant women, are needed to evaluate vehicle restraint systems with respect to reducing the risk of placental abruption. Developing these models requires accurate material properties for tissues in the pregnant abdomen under dynamic loading conditions that can occur in crashes. A method has been developed for determining dynamic material properties of human soft tissues that combines results from uniaxial tensile tests, specimen-specific finite-element models based on laser scans that accurately capture non-uniform tissue-specimen geometry, and optimization techniques. The current study applies this method to characterizing material properties of placental tissue. For 21 placenta specimens tested at a strain rate of 12/s, the mean failure strain is 0.472+/-0.097 and the mean failure stress is 34.80+/-12.62 kPa. A first-order Ogden material model with ground-state shear modulus (mu) of 23.97+/-5.52 kPa and exponent (alpha(1)) of 3.66+/-1.90 best fits the test results. The new method provides a nearly 40% error reduction (p<0.001) compared to traditional curve-fitting methods by considering detailed specimen geometry, loading conditions, and dynamic effects from high-speed loading. The proposed method can be applied to determine mechanical properties of other soft biological tissues.
机动车事故是导致美国母体创伤性胎儿死亡的主要原因,而胎盘早剥是这些死亡的最常见原因。为了最大限度地减少这种伤害,需要新的评估工具,如碰撞测试假人和孕妇计算模型,以评估车辆约束系统降低胎盘早剥风险的能力。开发这些模型需要在可能发生碰撞的动态加载条件下,对孕妇腹部组织具有准确的材料性能。已经开发出一种方法来确定人类软组织的动态材料性能,该方法结合了单轴拉伸试验的结果、基于激光扫描的特定于样本的有限元模型,这些模型可以准确地捕捉到不均匀的组织样本几何形状,以及优化技术。本研究应用该方法来描述胎盘组织的材料特性。在 21 个以 12/s 的应变速率测试的胎盘样本中,平均失效应变为 0.472+/-0.097,平均失效应力为 34.80+/-12.62 kPa。一级 Ogden 材料模型,其基础状态剪切模量 (mu) 为 23.97+/-5.52 kPa,指数 (alpha(1)) 为 3.66+/-1.90,最符合测试结果。与传统的曲线拟合方法相比,新方法通过考虑详细的样本几何形状、加载条件和高速加载产生的动态效应,将误差降低了近 40%(p<0.001)。该方法可用于确定其他软生物组织的力学性能。