MicroNanophysics Research Laboratory, Department of Mechanical Engineering,Monash University, Clayton, VIC 3800, Australia.
Biomicrofluidics. 2007 Jan 1;1(1):14103. doi: 10.1063/1.2409629.
An effective mechanism for rapid and efficient microfluidic particle trapping and concentration is proposed without requiring any mechanically moving parts. When a voltage beyond the threshold atmospheric ionization value is applied on a sharp electrode tip mounted at an angle above a microfluidic liquid chamber, the bulk electrohydrodynamic air thrust that is generated results in interfacial shear and, hence, primary azimuthal liquid surface recirculation. This discharge driven vortex mechanism, in turn, causes a secondary bulk meridional liquid recirculation, which produces an inward radial force near the bottom of the chamber. Particles suspended in the liquid are then rapidly convected by the bulk recirculation toward the bottom, where the inward radial force causes them to spiral in a helical swirl-like fashion toward a stagnation point. In particular, we show that these flows, similar to Batchelor flows occurring in a cylindrical liquid column between a stationary and rotating disk, can be used for the separation of red blood cells from blood plasma in a miniaturized device.
提出了一种无需任何机械运动部件即可快速有效捕获和浓缩微流控粒子的有效机制。当在安装成一定角度的尖锐电极尖端上施加超过大气离子化阈值的电压时,所产生的体积电动力学空气推力会导致界面剪切,从而产生主要的轴向液体表面再循环。这种放电驱动的涡旋机制反过来又引起二次体的子午液体再循环,从而在腔室的底部附近产生向内的径向力。悬浮在液体中的颗粒然后通过体再循环迅速被输送到底部,在底部,向内的径向力使它们以螺旋状的旋涡方式向停滞点螺旋运动。特别地,我们表明,这些流动类似于在固定和旋转圆盘之间的圆柱形液体柱中发生的巴切勒流动,可以用于在微型设备中从血浆中分离红细胞。