Suppr超能文献

基于体静电动力流的微流控全血血浆分离。

Microfluidic blood plasma separation via bulk electrohydrodynamic flows.

机构信息

MicroNanophysics Research Laboratory, Department of Mechanical Engineering,Monash University, Clayton, VIC 3800, Australia.

出版信息

Biomicrofluidics. 2007 Jan 1;1(1):14103. doi: 10.1063/1.2409629.

Abstract

An effective mechanism for rapid and efficient microfluidic particle trapping and concentration is proposed without requiring any mechanically moving parts. When a voltage beyond the threshold atmospheric ionization value is applied on a sharp electrode tip mounted at an angle above a microfluidic liquid chamber, the bulk electrohydrodynamic air thrust that is generated results in interfacial shear and, hence, primary azimuthal liquid surface recirculation. This discharge driven vortex mechanism, in turn, causes a secondary bulk meridional liquid recirculation, which produces an inward radial force near the bottom of the chamber. Particles suspended in the liquid are then rapidly convected by the bulk recirculation toward the bottom, where the inward radial force causes them to spiral in a helical swirl-like fashion toward a stagnation point. In particular, we show that these flows, similar to Batchelor flows occurring in a cylindrical liquid column between a stationary and rotating disk, can be used for the separation of red blood cells from blood plasma in a miniaturized device.

摘要

提出了一种无需任何机械运动部件即可快速有效捕获和浓缩微流控粒子的有效机制。当在安装成一定角度的尖锐电极尖端上施加超过大气离子化阈值的电压时,所产生的体积电动力学空气推力会导致界面剪切,从而产生主要的轴向液体表面再循环。这种放电驱动的涡旋机制反过来又引起二次体的子午液体再循环,从而在腔室的底部附近产生向内的径向力。悬浮在液体中的颗粒然后通过体再循环迅速被输送到底部,在底部,向内的径向力使它们以螺旋状的旋涡方式向停滞点螺旋运动。特别地,我们表明,这些流动类似于在固定和旋转圆盘之间的圆柱形液体柱中发生的巴切勒流动,可以用于在微型设备中从血浆中分离红细胞。

相似文献

1
Microfluidic blood plasma separation via bulk electrohydrodynamic flows.
Biomicrofluidics. 2007 Jan 1;1(1):14103. doi: 10.1063/1.2409629.
2
Surface acoustic wave concentration of particle and bioparticle suspensions.
Biomed Microdevices. 2007 Oct;9(5):647-56. doi: 10.1007/s10544-007-9058-2.
3
Elastic membrane enabled inward pumping for liquid manipulation on a centrifugal microfluidic platform.
Biomicrofluidics. 2022 May 18;16(3):034105. doi: 10.1063/5.0089112. eCollection 2022 May.
4
Magnetic-based microfluidic platform for biomolecular separation.
Biomed Microdevices. 2006 Jun;8(2):151-8. doi: 10.1007/s10544-006-7710-x.
5
Theory of rotating electrohydrodynamic flows in a liquid film.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Oct;80(4 Pt 1):041603. doi: 10.1103/PhysRevE.80.041603. Epub 2009 Oct 16.
7
Direct and inverse pumping in flows with homogeneous and non-homogeneous swirl.
Eur Phys J E Soft Matter. 2013 Aug;36(8):94. doi: 10.1140/epje/i2013-13094-y. Epub 2013 Aug 30.
8
Achieving Independent Control over Surface and Bulk Fluid Flows in Microchambers.
ACS Appl Mater Interfaces. 2021 Feb 10;13(5):6870-6878. doi: 10.1021/acsami.0c21291. Epub 2021 Feb 2.
9
Using microfluidic devices to study thrombosis in pathological blood flows.
Biomicrofluidics. 2018 May 15;12(4):042201. doi: 10.1063/1.5021769. eCollection 2018 Jul.
10
Liquid-based stationary phase for deterministic lateral displacement separation in microfluidics.
Soft Matter. 2017 Oct 25;13(41):7649-7656. doi: 10.1039/c7sm01510k.

引用本文的文献

1
Thomson-Einstein's Tea Leaf Paradox Revisited: Aggregation in Rings.
Micromachines (Basel). 2023 Oct 30;14(11):2024. doi: 10.3390/mi14112024.
2
Swirl-like Acoustofluidic Stirring Facilitates Microscale Reactions in Sessile Droplets.
Micromachines (Basel). 2023 Apr 12;14(4):837. doi: 10.3390/mi14040837.
4
Microfluidic In-Flow Decantation Technique Using Stepped Pillar Arrays and Hydraulic Resistance Tuners.
Micromachines (Basel). 2019 Jul 15;10(7):471. doi: 10.3390/mi10070471.
5
6
On-chip density mixer enhanced by air chamber.
Biomicrofluidics. 2018 Jul 11;12(4):044108. doi: 10.1063/1.5033482. eCollection 2018 Jul.
7
Virtual vortex gear: Unique flow patterns driven by microfluidic inertia leading to pinpoint injection.
Biomicrofluidics. 2018 Jun 20;12(3):034114. doi: 10.1063/1.5031082. eCollection 2018 May.
8
Amplitude modulation schemes for enhancing acoustically-driven microcentrifugation and micromixing.
Biomicrofluidics. 2016 Sep 20;10(5):054106. doi: 10.1063/1.4963103. eCollection 2016 Sep.
9
Microfluidic blood cell sorting: now and beyond.
Small. 2014 May 14;10(9):1687-703. doi: 10.1002/smll.201302907. Epub 2014 Feb 10.
10
A capillary dielectrophoretic chip for real-time blood cell separation from a drop of whole blood.
Biomicrofluidics. 2013 Apr 18;7(2):24110. doi: 10.1063/1.4802269. eCollection 2013.

本文引用的文献

1
Separation of blood in microchannel bends.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:2627-30. doi: 10.1109/IEMBS.2004.1403754.
2
A microfluidic device for continuous, real time blood plasma separation.
Lab Chip. 2006 Jul;6(7):871-80. doi: 10.1039/b516401j. Epub 2006 Apr 19.
3
Centrifugal extraction of plasma from whole blood on a rotating disk.
Lab Chip. 2006 Jun;6(6):776-81. doi: 10.1039/b604145k. Epub 2006 Apr 13.
4
Blood plasma separation in microfluidic channels using flow rate control.
ASAIO J. 2005 Sep-Oct;51(5):585-90. doi: 10.1097/01.mat.0000178962.69695.b0.
5
Blood-on-a-chip.
Annu Rev Biomed Eng. 2005;7:77-103. doi: 10.1146/annurev.bioeng.7.011205.135108.
7
Manipulation and characterization of red blood cells with alternating current fields in microdevices.
Electrophoresis. 2003 Nov;24(21):3703-17. doi: 10.1002/elps.200305644.
8
Standardization of hemoglobinometry. II. The hemiglobincyanide method.
Clin Chim Acta. 1961 Jul;6:538-44. doi: 10.1016/0009-8981(61)90145-0.
9
Standardization of hemoglobinometry. I. The extinction coefficient of hemiglobincyanide.
Clin Chim Acta. 1960 Sep;5:719-26. doi: 10.1016/0009-8981(60)90014-0.
10
Particle separation by dielectrophoresis.
Electrophoresis. 2002 Jul;23(13):1973-83. doi: 10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验