New Zealand Institute for Advanced Study and Allan Wilson Centre for Molecular Ecology and Evolution, Massey University Albany, North Shore City 0745, New Zealand.
Genetics. 2009 Nov;183(3):1041-53. doi: 10.1534/genetics.109.107110. Epub 2009 Aug 24.
The capacity for phenotypic evolution is dependent upon complex webs of functional interactions that connect genotype and phenotype. Wrinkly spreader (WS) genotypes arise repeatedly during the course of a model Pseudomonas adaptive radiation. Previous work showed that the evolution of WS variation was explained in part by spontaneous mutations in wspF, a component of the Wsp-signaling module, but also drew attention to the existence of unknown mutational causes. Here, we identify two new mutational pathways (Aws and Mws) that allow realization of the WS phenotype: in common with the Wsp module these pathways contain a di-guanylate cyclase-encoding gene subject to negative regulation. Together, mutations in the Wsp, Aws, and Mws regulatory modules account for the spectrum of WS phenotype-generating mutations found among a collection of 26 spontaneously arising WS genotypes obtained from independent adaptive radiations. Despite a large number of potential mutational pathways, the repeated discovery of mutations in a small number of loci (parallel evolution) prompted the construction of an ancestral genotype devoid of known (Wsp, Aws, and Mws) regulatory modules to see whether the types derived from this genotype could converge upon the WS phenotype via a novel route. Such types-with equivalent fitness effects-did emerge, although they took significantly longer to do so. Together our data provide an explanation for why WS evolution follows a limited number of mutational pathways and show how genetic architecture can bias the molecular variation presented to selection.
表型进化的能力取决于将基因型和表型连接起来的复杂功能相互作用网络。在模型假单胞菌适应辐射的过程中,反复出现褶皱散布者 (WS) 基因型。先前的工作表明,WS 变异的进化部分可以用 Wsp 信号模块的组成部分 wspF 的自发突变来解释,但也引起了对未知突变原因的关注。在这里,我们确定了两种新的突变途径 (Aws 和 Mws),它们可以实现 WS 表型:与 Wsp 模块一样,这些途径包含一个双鸟苷酸环化酶编码基因,受负调控。Wsp、Aws 和 Mws 调节模块的突变共同解释了从独立适应辐射中获得的 26 个自发出现的 WS 基因型集合中发现的 WS 表型生成突变的范围。尽管存在大量潜在的突变途径,但在少数几个位点(平行进化)反复发现突变促使构建了一种没有已知(Wsp、Aws 和 Mws)调节模块的祖先基因型,以观察源自该基因型的类型是否可以通过新途径收敛到 WS 表型。尽管它们需要更长的时间,但确实出现了具有等效适应度效应的这种类型。我们的数据共同解释了为什么 WS 进化遵循有限数量的突变途径,并展示了遗传结构如何使呈递给选择的分子变异产生偏差。