Suppr超能文献

适应辐射实验种群中假单胞菌的适应性进化。四、遗传约束引导平行适应辐射中的进化轨迹。

Adaptive divergence in experimental populations of Pseudomonas fluorescens. IV. Genetic constraints guide evolutionary trajectories in a parallel adaptive radiation.

机构信息

New Zealand Institute for Advanced Study and Allan Wilson Centre for Molecular Ecology and Evolution, Massey University Albany, North Shore City 0745, New Zealand.

出版信息

Genetics. 2009 Nov;183(3):1041-53. doi: 10.1534/genetics.109.107110. Epub 2009 Aug 24.

Abstract

The capacity for phenotypic evolution is dependent upon complex webs of functional interactions that connect genotype and phenotype. Wrinkly spreader (WS) genotypes arise repeatedly during the course of a model Pseudomonas adaptive radiation. Previous work showed that the evolution of WS variation was explained in part by spontaneous mutations in wspF, a component of the Wsp-signaling module, but also drew attention to the existence of unknown mutational causes. Here, we identify two new mutational pathways (Aws and Mws) that allow realization of the WS phenotype: in common with the Wsp module these pathways contain a di-guanylate cyclase-encoding gene subject to negative regulation. Together, mutations in the Wsp, Aws, and Mws regulatory modules account for the spectrum of WS phenotype-generating mutations found among a collection of 26 spontaneously arising WS genotypes obtained from independent adaptive radiations. Despite a large number of potential mutational pathways, the repeated discovery of mutations in a small number of loci (parallel evolution) prompted the construction of an ancestral genotype devoid of known (Wsp, Aws, and Mws) regulatory modules to see whether the types derived from this genotype could converge upon the WS phenotype via a novel route. Such types-with equivalent fitness effects-did emerge, although they took significantly longer to do so. Together our data provide an explanation for why WS evolution follows a limited number of mutational pathways and show how genetic architecture can bias the molecular variation presented to selection.

摘要

表型进化的能力取决于将基因型和表型连接起来的复杂功能相互作用网络。在模型假单胞菌适应辐射的过程中,反复出现褶皱散布者 (WS) 基因型。先前的工作表明,WS 变异的进化部分可以用 Wsp 信号模块的组成部分 wspF 的自发突变来解释,但也引起了对未知突变原因的关注。在这里,我们确定了两种新的突变途径 (Aws 和 Mws),它们可以实现 WS 表型:与 Wsp 模块一样,这些途径包含一个双鸟苷酸环化酶编码基因,受负调控。Wsp、Aws 和 Mws 调节模块的突变共同解释了从独立适应辐射中获得的 26 个自发出现的 WS 基因型集合中发现的 WS 表型生成突变的范围。尽管存在大量潜在的突变途径,但在少数几个位点(平行进化)反复发现突变促使构建了一种没有已知(Wsp、Aws 和 Mws)调节模块的祖先基因型,以观察源自该基因型的类型是否可以通过新途径收敛到 WS 表型。尽管它们需要更长的时间,但确实出现了具有等效适应度效应的这种类型。我们的数据共同解释了为什么 WS 进化遵循有限数量的突变途径,并展示了遗传结构如何使呈递给选择的分子变异产生偏差。

相似文献

6
Predicting mutational routes to new adaptive phenotypes.
Elife. 2019 Jan 8;8:e38822. doi: 10.7554/eLife.38822.
8
Experimental evolution reveals hidden diversity in evolutionary pathways.
Elife. 2015 Mar 25;4:e07074. doi: 10.7554/eLife.07074.
9
Forecasting of phenotypic and genetic outcomes of experimental evolution in Pseudomonas protegens.
PLoS Genet. 2021 Aug 5;17(8):e1009722. doi: 10.1371/journal.pgen.1009722. eCollection 2021 Aug.
10
Evolutionary convergence in experimental Pseudomonas populations.
ISME J. 2017 Mar;11(3):589-600. doi: 10.1038/ismej.2016.157. Epub 2016 Dec 2.

引用本文的文献

1
Evolution of genotypic and phenotypic diversity in multispecies biofilms.
NPJ Biofilms Microbiomes. 2025 Jul 1;11(1):118. doi: 10.1038/s41522-025-00755-1.
3
Co-Existence Slows Diversification in Experimental Populations of E. coli and P. fluorescens.
Environ Microbiol. 2025 Feb;27(2):e70061. doi: 10.1111/1462-2920.70061.
4
Hypermutability bypasses genetic constraints in SCV phenotypic switching in Pseudomonas aeruginosa biofilms.
NPJ Biofilms Microbiomes. 2025 Jan 13;11(1):14. doi: 10.1038/s41522-024-00644-z.
5
Extending evolutionary forecasts across bacterial species.
Proc Biol Sci. 2024 Dec;291(2036):20242312. doi: 10.1098/rspb.2024.2312. Epub 2024 Dec 11.
7
Polar accumulation of pyoverdin and exit from stationary phase.
Microlife. 2024 Feb 14;5:uqae001. doi: 10.1093/femsml/uqae001. eCollection 2024.
9
Evolution of cyclic di-GMP signalling on a short and long term time scale.
Microbiology (Reading). 2023 Jun;169(6). doi: 10.1099/mic.0.001354.
10
Distribution of mutation rates challenges evolutionary predictability.
Microbiology (Reading). 2023 May;169(5). doi: 10.1099/mic.0.001323.

本文引用的文献

2
ADAPTIVE RADIATION ALONG GENETIC LINES OF LEAST RESISTANCE.
Evolution. 1996 Oct;50(5):1766-1774. doi: 10.1111/j.1558-5646.1996.tb03563.x.
3
Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens.
Genome Biol. 2009;10(5):R51. doi: 10.1186/gb-2009-10-5-r51. Epub 2009 May 11.
4
Is genetic evolution predictable?
Science. 2009 Feb 6;323(5915):746-51. doi: 10.1126/science.1158997.
6
The loci of evolution: how predictable is genetic evolution?
Evolution. 2008 Sep;62(9):2155-77. doi: 10.1111/j.1558-5646.2008.00450.x. Epub 2008 Jul 4.
7
Theoretical approaches to the evolution of development and genetic architecture.
Ann N Y Acad Sci. 2008;1133:67-86. doi: 10.1196/annals.1438.002.
8
9
Mutational activation of niche-specific genes provides insight into regulatory networks and bacterial function in a complex environment.
Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18247-52. doi: 10.1073/pnas.0706739104. Epub 2007 Nov 7.
10
Morphological evolution through multiple cis-regulatory mutations at a single gene.
Nature. 2007 Aug 2;448(7153):587-90. doi: 10.1038/nature05988. Epub 2007 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验