Balcke Gerd U, Turunen Lea P, Geyer Roland, Wenderoth Dirk F, Schlosser Dietmar
Department of Hydrogeology, UFZ Centre for Environmental Research Leipzig-Halle, Theodor-Lieser-Str. 4, D-06120 Halle, Germany.
FEMS Microbiol Ecol. 2004 Jul 1;49(1):109-20. doi: 10.1016/j.femsec.2003.08.014.
The biodegradation of monochlorobenzene, the main contaminant in a quaternary aquifer at Bitterfeld, Central Germany, was studied in microcosm experiments employing either original groundwater or defined mineral media together with the indigenous microbial community from the polluted site. The impact of consecutive aerobic-anaerobic-aerobic incubations on monochlorobenzene biodegradation, microbial diversity, and pH development was examined. The related changes in microbial community composition were analyzed by 16S rRNA gene-based single-strand conformation polymorphism (SSCP) fingerprints and sequencing of dominant bands and by quantitative analysis of bacterial respiratory chain quinones as biomarkers. Under aerobic conditions, the indigenous microbial community of the groundwater degraded monochlorobenzene mainly via the modified ortho-pathway. Respiratory chain quinones and SSCP analysis suggested dominance of the genera Acidovorax and Pseudomonas. A shift to anoxic conditions resulted in monochlorobenzene biotransformation but no dechlorination. The ability to degrade monochlorobenzene aerobically remained preserved throughout a fortnightly anoxic period at sufficiently high buffer capacity. Acidification, caused by monochlorobenzene biodegradation, was alkalinity-controlled. At low initial alkalinity a substantial decrease in pH, monochlorobenzene degradation, and total counts of live cells, accompanied by a change of the microbial community composition, was observed.
德国中部比特费尔德一个第四纪含水层中的主要污染物一氯苯的生物降解,在微观实验中进行了研究,该实验采用了原地下水或特定的矿物介质以及受污染场地的本地微生物群落。研究了连续好氧-厌氧-好氧培养对一氯苯生物降解、微生物多样性和pH值变化的影响。通过基于16S rRNA基因的单链构象多态性(SSCP)指纹图谱、优势条带测序以及作为生物标志物的细菌呼吸链醌的定量分析,分析了微生物群落组成的相关变化。在好氧条件下,地下水中的本地微生物群落主要通过改良的邻位途径降解一氯苯。呼吸链醌和SSCP分析表明,嗜酸菌属和假单胞菌属占优势。转变为缺氧条件导致一氯苯生物转化,但没有脱氯现象。在足够高的缓冲容量下,在为期两周的缺氧期内,好氧降解一氯苯的能力一直保持。由一氯苯生物降解引起的酸化受碱度控制。在低初始碱度下,观察到pH值大幅下降、一氯苯降解以及活细胞总数减少,同时微生物群落组成发生变化。