Suppr超能文献

禾本科植物中的八氢番茄红素合酶基因家族:亚功能化实现类胡萝卜素合成的组织特异性调控

The phytoene synthase gene family in the Grasses: subfunctionalization provides tissue-specific control of carotenogenesis.

作者信息

Li Faqiang, Tsfadia Oren, Wurtzel Eleanore T

机构信息

Department of Biological Sciences, Lehman College, The City University of New York, Bronx, New York 10468, USA.

出版信息

Plant Signal Behav. 2009 Mar;4(3):208-11. doi: 10.4161/psb.4.3.7798.

Abstract

Carotenoids are a complex class of isoprenoid pigments playing diverse roles in plants and providing nutritional value. Metabolic engineering of the biosynthetic pathway has been of interest to specifically address global vitamin A deficiency by breeding cereal crop staples in the Poaceae (Grass family) for elevated levels of provitamin A carotenoids. However, there remain open questions about the rate-controlling steps that limit predictability of metabolic engineering in plants, whether by transgenic or nontransgenic means. We decided to focus on the first committed biosynthetic step which is mediated by phytoene synthase. Our studies revealed that in the Grasses, PSY is encoded by three genes. Maize transcript profiling, together with carotenoid and ABA analysis, revealed that the three PSY copies have subfunctionalized and provide the Grasses with a fine tine control of carotenogenesis in response to various developmental and external cues. Promoter analysis supports subfunctionalization; cis-element analysis of maize alleles and comparison with Grass orthologs suggests that man's selection of yellow maize endosperm has occurred at the expense of a change of gene regulation in photosynthetic tissue as compared to the progenitor white endosperm allele.

摘要

类胡萝卜素是一类复杂的类异戊二烯色素,在植物中发挥着多种作用并具有营养价值。生物合成途径的代谢工程一直备受关注,旨在通过培育禾本科(草科)的谷类作物主食来提高维生素A原类胡萝卜素的水平,从而专门解决全球维生素A缺乏问题。然而,关于限制植物代谢工程可预测性的速率控制步骤,无论是通过转基因还是非转基因手段,仍然存在一些悬而未决的问题。我们决定专注于由八氢番茄红素合酶介导的第一个关键生物合成步骤。我们的研究表明,在禾本科植物中,PSY由三个基因编码。玉米转录谱分析以及类胡萝卜素和脱落酸分析表明,这三个PSY拷贝已经发生了亚功能化,使禾本科植物能够根据各种发育和外部信号对类胡萝卜素生成进行精细调控。启动子分析支持亚功能化;对玉米等位基因的顺式元件分析以及与禾本科直系同源基因的比较表明,与原始的白色胚乳等位基因相比,人类对黄色玉米胚乳的选择是以光合组织中基因调控的改变为代价的。

相似文献

4
Phytoene synthase 2 in tomato fruits remains functional and contributes to abscisic acid formation.
Plant Sci. 2022 Mar;316:111177. doi: 10.1016/j.plantsci.2022.111177. Epub 2022 Jan 5.
5
Strigolactone Levels in Dicot Roots Are Determined by an Ancestral Symbiosis-Regulated Clade of the Gene Family.
Front Plant Sci. 2018 Mar 1;9:255. doi: 10.3389/fpls.2018.00255. eCollection 2018.
6
Regulation of carotenoid biosynthesis genes in response to light in Chlamydomonas reinhardtii.
Biochim Biophys Acta. 2002 Nov 13;1579(1):26-34. doi: 10.1016/s0167-4781(02)00500-6.
8
Perturbations in the Carotenoid Biosynthesis Pathway in Tomato Fruit Reactivate the Leaf-Specific Phytoene Synthase 2.
Front Plant Sci. 2022 Feb 25;13:844748. doi: 10.3389/fpls.2022.844748. eCollection 2022.
9
The dual role of phytoene synthase genes in carotenogenesis in carrot roots and leaves.
Mol Breed. 2014;34(4):2065-2079. doi: 10.1007/s11032-014-0163-7.

引用本文的文献

1
Functional Characterization of the First Phytoene Synthase in Red Algae from .
Mar Drugs. 2024 May 31;22(6):257. doi: 10.3390/md22060257.
3
Bread Wheat Biofortification for Grain Carotenoid Content by Inter-Specific Breeding.
Foods. 2023 Mar 23;12(7):1365. doi: 10.3390/foods12071365.
4
Perturbations in the Carotenoid Biosynthesis Pathway in Tomato Fruit Reactivate the Leaf-Specific Phytoene Synthase 2.
Front Plant Sci. 2022 Feb 25;13:844748. doi: 10.3389/fpls.2022.844748. eCollection 2022.
6
A hypothesis about the origin of carotenoid lipid droplets in the green algae Dunaliella and Haematococcus.
Planta. 2019 Jan;249(1):31-47. doi: 10.1007/s00425-018-3050-3. Epub 2018 Nov 23.
7
Changing Form and Function through Carotenoids and Synthetic Biology.
Plant Physiol. 2019 Mar;179(3):830-843. doi: 10.1104/pp.18.01122. Epub 2018 Oct 25.
9
Characterization of Aldehyde Oxidase (AO) Genes Involved in the Accumulation of Carotenoid Pigments in Wheat Grain.
Front Plant Sci. 2017 May 24;8:863. doi: 10.3389/fpls.2017.00863. eCollection 2017.

本文引用的文献

1
Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize.
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18232-7. doi: 10.1073/pnas.0809737105. Epub 2008 Nov 14.
2
Strigolactone inhibition of shoot branching.
Nature. 2008 Sep 11;455(7210):189-94. doi: 10.1038/nature07271.
3
Inhibition of shoot branching by new terpenoid plant hormones.
Nature. 2008 Sep 11;455(7210):195-200. doi: 10.1038/nature07272.
6
Metabolic engineering of carotenoid biosynthesis in plants.
Trends Biotechnol. 2008 Mar;26(3):139-45. doi: 10.1016/j.tibtech.2007.12.003. Epub 2008 Jan 28.
7
Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification.
Science. 2008 Jan 18;319(5861):330-3. doi: 10.1126/science.1150255.
9
Identification of QTL and association of a phytoene synthase gene with endosperm colour in durum wheat.
Theor Appl Genet. 2007 Feb;114(3):525-37. doi: 10.1007/s00122-006-0453-5. Epub 2006 Nov 28.
10
Carotenoid accumulation and function in seeds and non-green tissues.
Plant Cell Environ. 2006 Mar;29(3):435-45. doi: 10.1111/j.1365-3040.2005.01492.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验