US Environmental Protection Agency, Western Ecology Division, 200 SW 35th Street, Corvallis, OR 97333, USA.
Tree Physiol. 2009 Nov;29(11):1381-93. doi: 10.1093/treephys/tpp071. Epub 2009 Sep 11.
Evapotranspiration (ET) is driven by evaporative demand, available solar energy and soil moisture (SM) as well as by plant physiological activity which may be substantially affected by elevated CO2 and O3. A multi-year study was conducted in outdoor sunlit-controlled environment mesocosm containing ponderosa pine seedlings growing in a reconstructed soil-litter system. The study used a 2 x 2 factorial design with two concentrations of CO2 (ambient and elevated), two levels of O3 (low and high) and three replicates of each treatment. The objective of this study was to assess the effects of chronic exposure to elevated CO2 and O3, alone and in combination, on daily ET. This study evaluated three hypotheses: (i) because elevated CO2 stimulates stomatal closure, O3 effects on ET will be less under elevated CO2 than under ambient CO2; (ii) elevated CO2 will ameliorate the long-term effects of O3 on ET; and (iii) because conductance (g) decreases with decreasing SM, the impacts of elevated CO2 and O3, alone and in combination, on water loss via g will be greater in early summer when SM is not limiting than to other times of the year. A mixed-model covariance analysis was used to adjust the daily ET for seasonality and the effects of SM and photosynthetically active radiation when testing for the effects of CO2 and O3 on ET via the vapor pressure deficit gradient. The empirical results indicated that the interactive stresses of elevated CO2 and O3 resulted in a lesser reduction in ET via reduced canopy conductance than the sum of the individual effects of each gas. CO2-induced reductions in ET were more pronounced when trees were physiologically most active. O3-induced reductions in ET under ambient CO2 were likely transpirational changes via reduced conductance because needle area and root biomass were not affected by exposures to elevated O3 in this study.
蒸散作用(ET)受蒸发需求、可用太阳能和土壤水分(SM)以及植物生理活动的驱动,而这些因素可能会受到升高的 CO2 和 O3 的显著影响。本研究在户外阳光控制环境中进行了一项为期多年的实验,实验中使用重建的土壤-凋落物系统种植了黄松幼苗。该研究采用 2×2 析因设计,有两个 CO2 浓度(环境和升高)、两个 O3 浓度(低和高),每个处理有三个重复。本研究的目的是评估单独和组合暴露于升高的 CO2 和 O3 对每日蒸散作用的影响。本研究评估了三个假设:(i)因为升高的 CO2 会刺激气孔关闭,所以在升高的 CO2 下,O3 对 ET 的影响将小于环境 CO2 下;(ii)升高的 CO2 将减轻 O3 对 ET 的长期影响;(iii)因为导度(g)随 SM 降低而降低,所以单独和组合暴露于升高的 CO2 和 O3 对通过 g 损失的水分的影响将在 SM 不限制的初夏大于一年中的其他时间。混合模型协方差分析用于在通过水汽压亏缺梯度测试 CO2 和 O3 对 ET 的影响时,调整每日 ET 以适应季节性和 SM 以及光合有效辐射的影响。实证结果表明,升高的 CO2 和 O3 的交互胁迫导致通过降低冠层导度减少 ET 的程度小于两种气体单独作用的总和。当树木生理活动最活跃时,CO2 引起的 ET 减少更为明显。在环境 CO2 下,O3 引起的 ET 减少可能是蒸腾变化,因为在本研究中,暴露于升高的 O3 并没有影响针叶面积和根系生物量。