Department of Critical Care Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
J Cereb Blood Flow Metab. 2010 Jan;30(1):119-29. doi: 10.1038/jcbfm.2009.194. Epub 2009 Sep 16.
The mechanisms leading to delayed neuronal death after asphyxial cardiac arrest (ACA) in the developing brain are unknown. This study aimed at investigating the possible role of microglial activation in neuronal death in developing brain after ACA. Postnatal day-17 rats were subjected to 9 mins of ACA followed by resuscitation. Rats were randomized to treatment with minocycline, (90 mg/kg, intraperitoneally (i.p.)) or vehicle (saline, i.p.) at 1 h after return of spontaneous circulation. Thereafter, minocycline (22.5 mg/kg, i.p.) was administrated every 12 h until sacrifice. Microglial activation (evaluated by immunohistochemistry using ionized calcium-binding adapter molecule-1 (Iba1) antibody) coincided with DNA fragmentation and neurodegeneration in CA1 hippocampus and cortex (assessed by deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL), Fluoro-Jade-B and Nissl stain). Minocycline significantly decreased both the microglial response and neuronal degeneration compared with the vehicle. Asphyxial CA significantly enhanced proinflammatory cytokine and chemokine levels in hippocampus versus control (assessed by multiplex bead array assay), specifically tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-1alpha (MIP-1alpha), regulated upon activation, normal T-cell expressed and secreted (RANTES), and growth-related oncogene (GRO-KC) (P<0.05). Minocycline attenuated ACA-induced increases in MIP-1alpha and RANTES (P<0.05). These data show that microglial activation and cytokine production are increased in immature brain after ACA. The beneficial effect of minocycline suggests an important role for microglia in selective neuronal death after pediatric ACA, and a possible therapeutic target.
导致窒息性心脏骤停后发育中大脑神经元延迟死亡的机制尚不清楚。本研究旨在探讨小胶质细胞激活在窒息性心脏骤停后发育中大脑神经元死亡中的可能作用。将出生后 17 天的大鼠进行 9 分钟的窒息性心脏骤停,然后进行复苏。大鼠随机分为在自主循环恢复后 1 小时接受米诺环素(90mg/kg,腹腔内(ip.))或载体(盐水,ip.)治疗的组。此后,每隔 12 小时给予米诺环素(22.5mg/kg,ip.),直到处死。小胶质细胞激活(通过用离子钙结合衔接分子-1(Iba1)抗体进行免疫组化评估)与 CA1 海马和皮质中的 DNA 片段化和神经退行性变同时发生(通过脱氧核苷酸转移酶介导的 dUTP 缺口末端标记(TUNEL)、荧光-翡翠-B 和尼氏染色评估)。与载体相比,米诺环素显著降低了小胶质细胞反应和神经元变性。窒息性心脏骤停与对照相比,明显增强了海马中的促炎细胞因子和趋化因子水平(通过多重珠阵列分析评估),特别是肿瘤坏死因子-α(TNF-α)、巨噬细胞炎性蛋白-1α(MIP-1α)、激活调节正常 T 细胞表达和分泌(RANTES)和生长相关癌基因(GRO-KC)(P<0.05)。米诺环素减弱了 ACA 诱导的 MIP-1α和 RANTES 增加(P<0.05)。这些数据表明,窒息性心脏骤停后未成熟大脑中小胶质细胞激活和细胞因子产生增加。米诺环素的有益作用表明小胶质细胞在儿科窒息性心脏骤停后选择性神经元死亡中起重要作用,并且是一个潜在的治疗靶点。