Suppr超能文献

小干扰RNA介导的血管平滑肌中h-钙调蛋白的敲低

siRNA-mediated knockdown of h-caldesmon in vascular smooth muscle.

作者信息

Smolock Elaine M, Trappanese Danielle M, Chang Shaohua, Wang Tanchun, Titchenell Paul, Moreland Robert S

机构信息

Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th St., MS #488, Philadelphia, PA 19102, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2009 Nov;297(5):H1930-9. doi: 10.1152/ajpheart.00129.2009. Epub 2009 Sep 18.

Abstract

Smooth muscle contraction involves phosphorylation of the regulatory myosin light chain. However, this thick-filament system of regulation cannot account for all aspects of a smooth muscle contraction. An alternate site of contractile regulation may be in the thin-filament-associated proteins, in particular caldesmon. Caldesmon has been proposed to be an inhibitory protein that acts either as a brake to stop any increase in resting or basal tone, or as a modulatory protein during contraction. The goal of this study was to use short interfering RNA technology to decrease the levels of the smooth muscle-specific isoform of caldesmon in intact vascular smooth muscle tissue to determine more carefully what role(s) caldesmon has in smooth muscle regulation. Intact strips of vascular tissue depleted of caldesmon produced significant levels of shortening velocity, indicative of cross-bridge cycling, in the unstimulated tissue and exhibited lower levels of contractile force to histamine. Our results also suggest that caldesmon does not play a role in the cooperative activation of unphosphorylated cross bridges by phosphorylated cross bridges. The velocity of shortening of the constitutively active tissue and the high basal values of myosin light chain phosphorylation suggest that h-caldesmon in vivo acts as a brake against contractions due to basally phosphorylated myosin. It is also possible that phosphorylation of h-caldesmon alone in the resting state may be a mechanism to produce increases in force without stimulation and increases in calcium. Disinhibition of h-caldesmon by phosphorylation would then allow force to be developed by activated myosin in the resting state.

摘要

平滑肌收缩涉及调节性肌球蛋白轻链的磷酸化。然而,这种粗肌丝调节系统无法解释平滑肌收缩的所有方面。收缩调节的另一个位点可能存在于细肌丝相关蛋白中,特别是钙调蛋白。钙调蛋白被认为是一种抑制性蛋白,它要么作为制动器阻止静息或基础张力的任何增加,要么在收缩过程中作为调节蛋白。本研究的目的是使用短干扰RNA技术降低完整血管平滑肌组织中平滑肌特异性钙调蛋白异构体的水平,以更仔细地确定钙调蛋白在平滑肌调节中所起的作用。去除钙调蛋白的完整血管组织条在未受刺激的组织中产生了显著水平的缩短速度,这表明存在横桥循环,并且对组胺的收缩力水平较低。我们的结果还表明,钙调蛋白在磷酸化横桥对未磷酸化横桥的协同激活中不起作用。组成型活性组织的缩短速度以及肌球蛋白轻链磷酸化的高基础值表明,体内的h-钙调蛋白作为对由于基础磷酸化肌球蛋白引起的收缩的制动器。也有可能在静息状态下单独h-钙调蛋白的磷酸化可能是一种在无刺激和钙增加的情况下产生力增加的机制。通过磷酸化对h-钙调蛋白的去抑制将允许在静息状态下由活化的肌球蛋白产生力。

相似文献

1
siRNA-mediated knockdown of h-caldesmon in vascular smooth muscle.
Am J Physiol Heart Circ Physiol. 2009 Nov;297(5):H1930-9. doi: 10.1152/ajpheart.00129.2009. Epub 2009 Sep 18.
2
siRNA knock down of casein kinase 2 increases force and cross-bridge cycling rates in vascular smooth muscle.
Am J Physiol Cell Physiol. 2007 Feb;292(2):C876-85. doi: 10.1152/ajpcell.00343.2006. Epub 2006 Sep 20.
5
Myosin light chain and caldesmon phosphorylation in arterial muscle stimulated with endothelin-1.
J Mol Cell Cardiol. 1990 Sep;22(9):1017-23. doi: 10.1016/0022-2828(90)91041-5.
6
Regulation of mitogen-activated protein kinase by protein kinase C and mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle.
Am J Physiol Cell Physiol. 2016 Jun 1;310(11):C921-30. doi: 10.1152/ajpcell.00311.2015. Epub 2016 Apr 6.
7
Protein kinase C activation during Ca2+-independent vascular smooth muscle contraction.
J Surg Res. 1998 Jul 15;78(1):48-53. doi: 10.1006/jsre.1998.5368.
9
Postnatal maturation modulates relationships among cytosolic Ca2+, myosin light chain phosphorylation, and contractile tone in ovine cerebral arteries.
Am J Physiol Heart Circ Physiol. 2007 Oct;293(4):H2183-92. doi: 10.1152/ajpheart.00647.2007. Epub 2007 Jul 27.
10
The effects of phosphorylation of smooth-muscle caldesmon.
Biochem J. 1987 Jun 1;244(2):417-25. doi: 10.1042/bj2440417.

引用本文的文献

1
Oxidative Stress, Reductive Stress and Antioxidants in Vascular Pathogenesis and Aging.
Antioxidants (Basel). 2023 May 19;12(5):1126. doi: 10.3390/antiox12051126.
2
Dual thick and thin filament linked regulation of stretch- and L-NAME-induced tone in young and senescent murine basilar artery.
Front Physiol. 2023 Mar 28;14:1099278. doi: 10.3389/fphys.2023.1099278. eCollection 2023.
3
An Overview of miRNAs Involved in PASMC Phenotypic Switching in Pulmonary Hypertension.
Biomed Res Int. 2021 Oct 7;2021:5765029. doi: 10.1155/2021/5765029. eCollection 2021.
4
Regulation of mitogen-activated protein kinase by protein kinase C and mitogen-activated protein kinase phosphatase-1 in vascular smooth muscle.
Am J Physiol Cell Physiol. 2016 Jun 1;310(11):C921-30. doi: 10.1152/ajpcell.00311.2015. Epub 2016 Apr 6.
6
Ablation of smooth muscle caldesmon affects the relaxation kinetics of arterial muscle.
Pflugers Arch. 2013 Feb;465(2):283-94. doi: 10.1007/s00424-012-1178-8. Epub 2012 Nov 14.
7
Smooth muscle tension induces invasive remodeling of the zebrafish intestine.
PLoS Biol. 2012;10(9):e1001386. doi: 10.1371/journal.pbio.1001386. Epub 2012 Sep 4.
8
Bladder smooth muscle organ culture preparation maintains the contractile phenotype.
Am J Physiol Renal Physiol. 2012 Nov 1;303(9):F1382-97. doi: 10.1152/ajprenal.00261.2011. Epub 2012 Aug 15.
9
Smooth muscle caldesmon modulates peristalsis in the wild type and non-innervated zebrafish intestine.
Neurogastroenterol Motil. 2012 Mar;24(3):288-99. doi: 10.1111/j.1365-2982.2011.01844.x.
10
Transient expression of myofibroblast-like cells in rat rib fracture callus.
Acta Orthop. 2012 Feb;83(1):93-8. doi: 10.3109/17453674.2011.652891. Epub 2012 Jan 17.

本文引用的文献

1
Role of caldesmon in the Ca2+ regulation of smooth muscle thin filaments: evidence for a cooperative switching mechanism.
J Biol Chem. 2008 Jan 4;283(1):47-56. doi: 10.1074/jbc.M706771200. Epub 2007 Oct 12.
2
Programming smooth muscle plasticity with chromatin dynamics.
Circ Res. 2007 May 25;100(10):1428-41. doi: 10.1161/01.RES.0000266448.30370.a0.
3
Myosin cross-bridge kinetics and the mechanism of catch.
Biophys J. 2007 Jul 15;93(2):554-65. doi: 10.1529/biophysj.107.105577. Epub 2007 Apr 27.
4
Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway.
J Cell Sci. 2007 May 15;120(Pt 10):1801-9. doi: 10.1242/jcs.001586. Epub 2007 Apr 24.
5
The functional consequence of RhoA knockdown by RNA interference in rat cerebral arteries.
Am J Physiol Heart Circ Physiol. 2007 Jul;293(1):H440-7. doi: 10.1152/ajpheart.01374.2006. Epub 2007 Mar 16.
6
siRNA knock down of casein kinase 2 increases force and cross-bridge cycling rates in vascular smooth muscle.
Am J Physiol Cell Physiol. 2007 Feb;292(2):C876-85. doi: 10.1152/ajpcell.00343.2006. Epub 2006 Sep 20.
7
Caldesmon freezes the structure of actin filaments during the actomyosin ATPase cycle.
Biochim Biophys Acta. 2006 Jun;1764(6):1054-62. doi: 10.1016/j.bbapap.2006.04.001. Epub 2006 Apr 7.
8
Calponin and caldesmon cellular domains in reacting microvessels following traumatic brain injury.
Microvasc Res. 2006 May;71(3):197-204. doi: 10.1016/j.mvr.2006.02.002. Epub 2006 Apr 25.
9
Modes of caldesmon binding to actin: sites of caldesmon contact and modulation of interactions by phosphorylation.
J Biol Chem. 2004 Dec 17;279(51):53387-94. doi: 10.1074/jbc.M410109200. Epub 2004 Sep 27.
10
Phosphatidylinositol 3-kinase modulates vascular smooth muscle contraction by calcium and myosin light chain phosphorylation-independent and -dependent pathways.
Am J Physiol Heart Circ Physiol. 2004 Feb;286(2):H657-66. doi: 10.1152/ajpheart.00497.2003. Epub 2003 Oct 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验