Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA.
PLoS One. 2009 Sep 22;4(9):e7134. doi: 10.1371/journal.pone.0007134.
The metabolism of the amyloid precursor protein (APP) and tau are central to the pathobiology of Alzheimer's disease (AD). We have examined the in vivo turnover of APP, secreted APP (sAPP), Abeta and tau in the wild-type and Tg2576 mouse brain using cycloheximide to block protein synthesis. In spite of overexpression of APP in the Tg2576 mouse, APP is rapidly degraded, similar to the rapid turnover of the endogenous protein in the wild-type mouse. sAPP is cleared from the brain more slowly, particularly in the Tg2576 model where the half-life of both the endogenous murine and transgene-derived human sAPP is nearly doubled compared to wild-type mice. The important Abeta degrading enzymes neprilysin and IDE were found to be highly stable in the brain, and soluble Abeta40 and Abeta42 levels in both wild-type and Tg2576 mice rapidly declined following the depletion of APP. The cytoskeletal-associated protein tau was found to be highly stable in both wild-type and Tg2576 mice. Our findings unexpectedly show that of these various AD-relevant protein metabolites, sAPP turnover in the brain is the most different when comparing a wild-type mouse and a beta-amyloid depositing, APP overexpressing transgenic model. Given the neurotrophic roles attributed to sAPP, the enhanced stability of sAPP in the beta-amyloid depositing Tg2576 mice may represent a neuroprotective response.
淀粉样前体蛋白 (APP) 和 tau 的代谢是阿尔茨海默病 (AD) 病理生物学的核心。我们使用环己酰亚胺阻断蛋白合成,研究了野生型和 Tg2576 小鼠脑中 APP、分泌型 APP (sAPP)、Abeta 和 tau 的体内周转率。尽管 Tg2576 小鼠中 APP 过度表达,但 APP 迅速降解,类似于野生型小鼠中内源性蛋白的快速周转。sAPP 从大脑中清除得更慢,特别是在 Tg2576 模型中,内源性鼠源性和转基因衍生的人源性 sAPP 的半衰期几乎是野生型小鼠的两倍。发现重要的 Abeta 降解酶 Neprilysin 和 IDE 在大脑中高度稳定,并且在 APP 耗尽后,野生型和 Tg2576 小鼠中的可溶性 Abeta40 和 Abeta42 水平迅速下降。细胞骨架相关蛋白 tau 在野生型和 Tg2576 小鼠中均高度稳定。我们的研究结果出人意料地表明,在比较野生型小鼠和β-淀粉样蛋白沉积、APP 过度表达的转基因模型时,大脑中 sAPP 周转率是各种与 AD 相关的蛋白代谢物中最不同的。鉴于 sAPP 具有神经营养作用,β-淀粉样蛋白沉积的 Tg2576 小鼠中 sAPP 的增强稳定性可能代表一种神经保护反应。