Suppr超能文献

在二氧化碳和臭氧自由空气增补中,白杨和杨桦林的叶和冠层导度。

Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.

机构信息

School of Natural Resources and Environment, University of Michigan, 440 Church Street, Ann Arbor, MI 48109, USA.

出版信息

Tree Physiol. 2009 Nov;29(11):1367-80. doi: 10.1093/treephys/tpp070. Epub 2009 Sep 22.

Abstract

Increasing concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have the potential to affect tree physiology and structure, and hence forest feedbacks on climate. Here, we investigated how elevated concentrations of CO2 (+45%) and O3 (+35%), alone and in combination, affected conductance for mass transfer at the leaf and canopy levels in pure aspen (Populus tremuloides Michx.) and in mixed aspen and birch (Betula papyrifera Marsh.) forests in the free-air CO2-O3 enrichment experiment near Rhinelander, Wisconsin (Aspen FACE). The study was conducted during two growing seasons, when steady-state leaf area index (L) had been reached after > 6 years of exposure to CO2- and O3-enrichment treatments. Canopy conductance (g(c)) was estimated from stand sap flux, while leaf-level conductance of sun leaves in the upper canopy was derived by three different and independent methods: sap flux and L in combination with vertical canopy modelling, leaf 13C discrimination methodology in combination with photosynthesis modelling and leaf-level gas exchange. Regardless of the method used, the mean values of leaf-level conductance were higher in trees growing under elevated CO2 and/or O3 than in trees growing in control plots, causing a CO2 x O3 interaction that was statistically significant (P < or = 0.10) for sap flux- and (for birch) 13C-derived leaf conductance. Canopy conductance was significantly increased by elevated CO2 but not significantly affected by elevated O3. Investigation of a short-term gap in CO2 enrichment demonstrated a +10% effect of transient exposure of elevated CO2-grown trees to ambient CO2 on g(c). All treatment effects were similar in pure aspen and mixed aspen-birch communities. These results demonstrate that short-term primary stomatal closure responses to elevated CO2 and O3 were completely offset by long-term cumulative effects of these trace gases on tree and stand structure in determining canopy- and leaf-level conductance in pure aspen and mixed aspen-birch forests. Our results, together with the findings from other long-term FACE experiments with trees, suggest that model assumptions of large reductions in stomatal conductance under rising atmospheric CO2 are very uncertain for forests.

摘要

大气中二氧化碳(CO2)和对流层臭氧(O3)浓度的增加有可能影响树木的生理学和结构,从而影响森林对气候的反馈。在这里,我们研究了在威斯康星州 Rhinelander 附近的自由空气 CO2-O3 富集实验(Aspen FACE)中,单独和组合升高的 CO2(+45%)和 O3(+35%)浓度如何影响纯白杨(Populus tremuloides Michx.)和白杨-桦木混合林叶片和冠层水平的质量转移导度。这项研究是在两个生长季节进行的,在经历了超过 6 年的 CO2 和 O3 富集处理后,达到了稳定的叶片面积指数(L)。通过林分 sap 通量估算冠层导度,而通过三种不同且独立的方法得出上层冠层中太阳叶的叶片水平导度:sap 通量和 L 与垂直冠层建模相结合、叶片 13C 分辨方法与光合作用建模相结合和叶片水平气体交换。无论使用哪种方法,在升高的 CO2 和/或 O3 下生长的树木的叶片水平导度的平均值都高于在对照小区中生长的树木,导致 CO2 x O3 相互作用具有统计学意义(P < or = 0.10)对于 sap 通量和(对于桦木)13C 衍生的叶片导度。CO2 升高显著增加了冠层导度,但 O3 升高没有显著影响。对 CO2 富集的短期缺口的研究表明,在短暂暴露于升高的 CO2 生长的树木中,瞬态暴露于环境 CO2 对 g(c) 的影响为+10%。在纯白杨和混合白杨-桦木群落中,所有处理效应均相似。这些结果表明,短期初级气孔对 CO2 和 O3 的关闭反应被这些痕量气体对树木和林分结构的长期累积效应完全抵消,从而确定了纯白杨和混合白杨-桦木林的冠层和叶片水平导度。我们的结果,以及其他树木的长期 FACE 实验的结果,表明,对于森林而言,大气中 CO2 升高导致气孔导度大幅降低的模型假设非常不确定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验