Suppr超能文献

通过不同动力学对调制器激活电流进行并行调节是运动回路输出共调制的基础。

Parallel regulation of a modulator-activated current via distinct dynamics underlies comodulation of motor circuit output.

作者信息

DeLong Nicholas D, Kirby Matthew S, Blitz Dawn M, Nusbaum Michael P

机构信息

Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6074, USA.

出版信息

J Neurosci. 2009 Sep 30;29(39):12355-67. doi: 10.1523/JNEUROSCI.3079-09.2009.

Abstract

The cellular mechanisms underlying comodulation of neuronal networks are not elucidated in most systems. We are addressing this issue by determining the mechanism by which a peptide hormone, crustacean cardioactive peptide (CCAP), modulates the biphasic (protraction/retraction) gastric mill (chewing) rhythm driven by the projection neuron MCN1 in the crab stomatogastric ganglion. MCN1 activates this rhythm by slow peptidergic (CabTRP Ia) and fast GABAergic excitation of the reciprocally inhibitory central pattern generator neurons LG (protraction) and Int1 (retraction), respectively. MCN1 synaptic transmission is limited to the retraction phase, because LG inhibits MCN1 during protraction. Bath-applied CCAP also excites both LG and Int1, but selectively prolongs protraction. Here, we use computational modeling and dynamic-clamp manipulations to establish that CCAP prolongs the gastric mill protractor (LG) phase and maintains the retractor (Int1) phase duration by activating the same modulator-activated inward current (I(MI)) in LG as MCN1-released CabTRP Ia. However, the CCAP-activated current (I(MI-CCAP)) and MCN1-activated current (I(MI-MCN1)) exhibit distinct time courses in LG during protraction. This distinction results from I(MI-CCAP) being regulated only by postsynaptic voltage, whereas I(MI-MCN1) is also regulated by LG presynaptic inhibition of MCN1. Hence, without CCAP, retraction and protraction duration are determined by the time course of I(MI-MCN1) buildup and feedback inhibition-mediated decay, respectively, in LG. With I(MI-CCAP) continually present, the impact of the feedback inhibition is reduced, prolonging protraction and maintaining retraction duration. Thus, comodulation of rhythmic motor activity can result from convergent activation, via distinct dynamics, of a single voltage-dependent current.

摘要

在大多数系统中,神经网络共调制背后的细胞机制尚未阐明。我们正在通过确定一种肽类激素——甲壳类动物心脏活性肽(CCAP)调节螃蟹口胃神经节中投射神经元MCN1驱动的双相(伸展/收缩)胃磨(咀嚼)节律的机制来解决这个问题。MCN1分别通过对相互抑制的中枢模式发生器神经元LG(伸展)和Int1(收缩)的慢肽能(CabTRP Ia)和快速GABA能兴奋来激活这种节律。MCN1的突触传递仅限于收缩期,因为LG在伸展期抑制MCN1。浴加CCAP也能兴奋LG和Int1,但选择性地延长伸展期。在这里,我们使用计算建模和动态钳制操作来确定,CCAP通过在LG中激活与MCN1释放的CabTRP Ia相同的调制激活内向电流(I(MI))来延长胃磨伸展器(LG)期并维持收缩器(Int1)期的持续时间。然而,CCAP激活电流(I(MI-CCAP))和MCN1激活电流(I(MI-MCN1))在伸展期的LG中表现出不同的时间进程。这种差异源于I(MI-CCAP)仅受突触后电压调节,而I(MI-MCN1)还受LG对MCN1的突触前抑制调节。因此,在没有CCAP的情况下,收缩期和伸展期的持续时间分别由LG中I(MI-MCN1)积累的时间进程和反馈抑制介导的衰减决定。随着I(MI-CCAP)持续存在,反馈抑制的影响降低,从而延长伸展期并维持收缩期持续时间。因此,节律性运动活动的共调制可能源于通过不同动力学对单个电压依赖性电流的汇聚激活。

相似文献

2
Hormonal modulation of sensorimotor integration.
J Neurosci. 2010 Feb 17;30(7):2418-27. doi: 10.1523/JNEUROSCI.5533-09.2010.
3
Convergent neuromodulation onto a network neuron can have divergent effects at the network level.
J Comput Neurosci. 2016 Apr;40(2):113-35. doi: 10.1007/s10827-015-0587-z. Epub 2016 Jan 21.
4
Divergent co-transmitter actions underlie motor pattern activation by a modulatory projection neuron.
Eur J Neurosci. 2007 Sep;26(5):1148-65. doi: 10.1111/j.1460-9568.2007.05744.x.
5
Presynaptic inhibition selectively weakens peptidergic cotransmission in a small motor system.
J Neurophysiol. 2009 Dec;102(6):3492-504. doi: 10.1152/jn.00833.2009. Epub 2009 Oct 14.
6
Convergent rhythm generation from divergent cellular mechanisms.
J Neurosci. 2013 Nov 13;33(46):18047-64. doi: 10.1523/JNEUROSCI.3217-13.2013.
7
Peptide hormone modulation of a neuronally modulated motor circuit.
J Neurophysiol. 2007 Dec;98(6):3206-20. doi: 10.1152/jn.00795.2006. Epub 2007 Oct 3.
8
Proprioceptor regulation of motor circuit activity by presynaptic inhibition of a modulatory projection neuron.
J Neurosci. 2005 Sep 21;25(38):8794-806. doi: 10.1523/JNEUROSCI.2663-05.2005.
9
Intercircuit control of motor pattern modulation by presynaptic inhibition.
J Neurosci. 1997 Apr 1;17(7):2247-56. doi: 10.1523/JNEUROSCI.17-07-02247.1997.
10
A switch between two modes of synaptic transmission mediated by presynaptic inhibition.
Nature. 1995 Nov 30;378(6556):502-5. doi: 10.1038/378502a0.

引用本文的文献

2
Switching neuron contributions to second network activity.
J Neurophysiol. 2024 Feb 1;131(2):417-434. doi: 10.1152/jn.00373.2023. Epub 2024 Jan 10.
3
Motor neurons within a network use cell-type specific feedback mechanisms to constrain relationships among ion channel mRNAs.
J Neurophysiol. 2023 Sep 1;130(3):569-584. doi: 10.1152/jn.00098.2023. Epub 2023 Aug 2.
4
The role of feedback and modulation in determining temperature resiliency in the lobster cardiac nervous system.
Front Neurosci. 2023 Mar 9;17:1113843. doi: 10.3389/fnins.2023.1113843. eCollection 2023.
5
Multiple intrinsic membrane properties are modulated in a switch from single- to dual-network activity.
J Neurophysiol. 2022 Nov 1;128(5):1181-1198. doi: 10.1152/jn.00337.2022. Epub 2022 Oct 5.
6
Neuromodulation Enables Temperature Robustness and Coupling Between Fast and Slow Oscillator Circuits.
Front Cell Neurosci. 2022 Mar 28;16:849160. doi: 10.3389/fncel.2022.849160. eCollection 2022.
7
The dynamic range of voltage-dependent gap junction signaling is maintained by -induced membrane potential depolarization.
J Neurophysiol. 2022 Mar 1;127(3):776-790. doi: 10.1152/jn.00545.2021. Epub 2022 Feb 16.
8
Feeding state-dependent modulation of feeding-related motor patterns.
J Neurophysiol. 2021 Dec 1;126(6):1903-1924. doi: 10.1152/jn.00387.2021. Epub 2021 Oct 20.
9
Perturbation-specific responses by two neural circuits generating similar activity patterns.
Curr Biol. 2021 Nov 8;31(21):4831-4838.e4. doi: 10.1016/j.cub.2021.08.042. Epub 2021 Sep 9.
10
Neuropeptide Modulation Increases Dendritic Electrical Spread to Restore Neuronal Activity Disrupted by Temperature.
J Neurosci. 2021 Sep 8;41(36):7607-7622. doi: 10.1523/JNEUROSCI.0101-21.2021. Epub 2021 Jul 28.

本文引用的文献

1
Reliable neuromodulation from circuits with variable underlying structure.
Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11742-6. doi: 10.1073/pnas.0905614106. Epub 2009 Jun 24.
2
Measurement of neuropeptides in crustacean hemolymph via MALDI mass spectrometry.
J Am Soc Mass Spectrom. 2009 Apr;20(4):708-18. doi: 10.1016/j.jasms.2008.12.007. Epub 2008 Dec 24.
3
Endogenous modulators of synaptic transmission: cannabinoid regulation in the supraoptic nucleus.
Prog Brain Res. 2008;170:129-36. doi: 10.1016/S0079-6123(08)00412-3.
4
Neuromodulation and the orchestration of the respiratory rhythm.
Respir Physiol Neurobiol. 2008 Dec 10;164(1-2):96-104. doi: 10.1016/j.resp.2008.06.007.
6
Oxytocin-induced postinhibitory rebound firing facilitates bursting activity in oxytocin neurons.
J Neurosci. 2008 Jan 9;28(2):385-94. doi: 10.1523/JNEUROSCI.5198-07.2008.
7
Descending command systems for the initiation of locomotion in mammals.
Brain Res Rev. 2008 Jan;57(1):183-91. doi: 10.1016/j.brainresrev.2007.07.019. Epub 2007 Aug 22.
8
Peptide hormone modulation of a neuronally modulated motor circuit.
J Neurophysiol. 2007 Dec;98(6):3206-20. doi: 10.1152/jn.00795.2006. Epub 2007 Oct 3.
9
Divergent co-transmitter actions underlie motor pattern activation by a modulatory projection neuron.
Eur J Neurosci. 2007 Sep;26(5):1148-65. doi: 10.1111/j.1460-9568.2007.05744.x.
10
Neuromodulators, not activity, control coordinated expression of ionic currents.
J Neurosci. 2007 Aug 8;27(32):8709-18. doi: 10.1523/JNEUROSCI.1274-07.2007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验