Centre de Regulació Genòmica (CRG), Universitat Pompeu Fabra, Barcelona, Spain.
PLoS One. 2009 Oct 1;4(10):e0007243. doi: 10.1371/journal.pone.0007243.
Although ubiquitously present in chromatin, the function of the linker histone subtypes is partly unknown and contradictory studies on their properties have been published. To explore whether the various H1 subtypes have a differential role in the organization and dynamics of chromatin we have incorporated all of the somatic human H1 subtypes into minichromosomes and compared their influence on nucleosome spacing, chromatin compaction and ATP-dependent remodeling. H1 subtypes exhibit different affinities for chromatin and different abilities to promote chromatin condensation, as studied with the Atomic Force Microscope. According to this criterion, H1 subtypes can be classified as weak condensers (H1.1 and H1.2), intermediate condensers (H1.3) and strong condensers (H1.0, H1.4, H1.5 and H1x). The variable C-terminal domain is required for nucleosome spacing by H1.4 and is likely responsible for the chromatin condensation properties of the various subtypes, as shown using chimeras between H1.4 and H1.2. In contrast to previous reports with isolated nucleosomes or linear nucleosomal arrays, linker histones at a ratio of one per nucleosome do not preclude remodeling of minichromosomes by yeast SWI/SNF or Drosophila NURF. We hypothesize that the linker histone subtypes are differential organizers of chromatin, rather than general repressors.
虽然连接组蛋白亚型普遍存在于染色质中,但它们的功能部分未知,并且已经发表了关于它们特性的相互矛盾的研究。为了探索各种 H1 亚型在染色质的组织和动力学中是否具有不同的作用,我们将所有体细胞人类 H1 亚型纳入迷你染色体,并比较它们对核小体间距、染色质紧缩和 ATP 依赖性重塑的影响。通过原子力显微镜研究,H1 亚型对染色质表现出不同的亲和力和促进染色质凝聚的不同能力。根据这一标准,H1 亚型可分为弱凝聚物(H1.1 和 H1.2)、中等凝聚物(H1.3)和强凝聚物(H1.0、H1.4、H1.5 和 H1x)。可变 C 端结构域是 H1.4 形成核小体间距所必需的,并且可能负责各种亚型的染色质凝聚特性,如 H1.4 和 H1.2 之间的嵌合体所示。与使用分离的核小体或线性核小体阵列的先前报告相反,每个核小体一个的连接组蛋白不会阻止酵母 SWI/SNF 或果蝇 NURF 对迷你染色体进行重塑。我们假设连接组蛋白亚型是染色质的差异组织者,而不是一般的抑制剂。